【数学】中3-24 二次方程式①(基本編) - 質問解決D.B.(データベース)

【数学】中3-24 二次方程式①(基本編)

問題文全文(内容文):
($x$の二次式)=0という形の方程式を$x$についての①____という。
解き方は、左辺の2乗を②____、
右辺に③____をつける!!

④$x^2=12$
⑤$2x^2=18$
⑥$5x^2-35=0$
⑦$9x^2-5=0$
⑧$2x^2-96=0$
⑨$2x^2-288=0$
⑩$4x^2+5=8$
⑪$5x^2-2=0$
⑫$1,2,3,4$のうち、$x^2-4x+3=0$
の解をすべて解こう!!
単元: #数学(中学生)#中3数学#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
($x$の二次式)=0という形の方程式を$x$についての①____という。
解き方は、左辺の2乗を②____、
右辺に③____をつける!!

④$x^2=12$
⑤$2x^2=18$
⑥$5x^2-35=0$
⑦$9x^2-5=0$
⑧$2x^2-96=0$
⑨$2x^2-288=0$
⑩$4x^2+5=8$
⑪$5x^2-2=0$
⑫$1,2,3,4$のうち、$x^2-4x+3=0$
の解をすべて解こう!!
投稿日:2013.07.04

<関連動画>

【流れを理解しよう♪】二次関数:法政大学高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$A,B$は,$y=ax^2$と$y=x+4$の交点であり,
$A,C$は,$y=ax^2$と$y=\dfrac{1}{2}x+6$の交点である.
$\triangle ABC$の面積を求めなさい.

法政大高校過去問

この動画を見る 

【高校受験対策/数学】死守75

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平行と合同#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守75

①$-8+5$を計算しなさい。

②$1+3×-(\frac{2}{7})$を計算しなさい。

③$2(a+4b)+3(a-2b)$を計算しなさい。

④$\sqrt{27}-\frac{6}{\sqrt{3}}$を計算しなさい。

⑤$(x+1)^2+(x-4)(x+2)$を計算しなさい。

⑥次の式を因数分解しなさい。
$9x^2-4y^2$

⑦右の図のように、長方形$ABCD$を対角線$AC$を折り目として折り返し、
頂点$B$が移った点を$E$とする。
$\angle ACE=20°$のとき、$\angle x$の大きさを求めなさい。

⑧右の図のように、2点$A(2,6)$、$B(8,2)$がある。
次の文中の(ア)、(イ)にあてはまる数を求めなさい。

直線$y=ax$のグラフが、線分$AB$上の点を通るとき、$a$の値の範囲は、(ア) $ \leqq a\leqq$ (イ)である。
この動画を見る 

図形:東京都立高校入試~全国入試問題解法【とんとん♪】

アイキャッチ画像
単元: #数学(中学生)#中3数学#円#高校入試過去問(数学)#東京都立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京都立の高校

図で、
円$O$:線分$AB$が直径
$C, D$は周上の点
$4$点:$A, C, B, D$の順 (一致しない)

$\angle AOC=\angle BDC$
$\angle ABD=34^{ \circ }$

$x$で示した$\angle OCD$の大きさは$口$度である。
$口$部分を求めよ。
※図は動画内参照
この動画を見る 

【高校受験対策/数学】関数54

アイキャッチ画像
単元: #中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数54

Q.
右の図1、2において、①は関数$y=ax^2$のグラフである。
2点$A$、$B$は①上の点であり、点$A$の座標は$(-2,2)$、点$B$の座標は$(3,2)$である。
また①上において、点$C$は$x$座標が点$A$の$x$座標より1だけ大きい点であり、点$D$は$x$座標が点$B$の$x$座標より1だけ小さい点である。

問1
$a$の値を求めなさい。

問2
4点$A$、$C$、$D$、$B$を頂点とする四角形$ACDB$の面積を求めなさい。

問3
図2のように、①上において$x$座標が点$A$の$x$座標より1だけ小さい点を$E$とし、$x$座標が点$B$の$x$座標より1だけ大きい点を$F$とする。
このとき、3点$F$、$E$、$C$を頂点とする$\triangle FEC$の面積と、3点$F$、$C$、$D$を頂点とする$\triangle FCD$の面積の比を最も簡単な整数の比で表しなさい。
この動画を見る 

【「変化の割合」のガイネンは今後も大切!】二次関数:法政大学第二高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a \gt 0 $とする.
$ y=ax+2$と$ y-ax^2 $において
xが-1からaまで増加するときの変化の割合が等しいとき,
aの値を求めなさい.

法大第二高校過去問
この動画を見る 
PAGE TOP