2通りで解説!! 都立青山 B - 質問解決D.B.(データベース)

2通りで解説!! 都立青山 B

問題文全文(内容文):
DP=?
*図は動画内参照

2021東京都立青山高等学校
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
DP=?
*図は動画内参照

2021東京都立青山高等学校
投稿日:2021.02.23

<関連動画>

華麗な別解

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+n+1$は$9$の倍数でないことを示せ.
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第1問(1)〜外から引いた接線と三角形の面積の最大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)0<$b$<100 を満たす実数$b$に対し、点(10,$b$)から放物線$C$:$y$=$x^2$に相異なる2本の接線を引き、この2本の接線の$C$における接点をそれぞれ$P_1$, $P_2$とする。実数$b$が0<$b$<100の範囲で動くとき、3角形$OP_1P_2$の面積の最大値を求めよ。ただし、Oは原点を表す。
この動画を見る 

自作 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$13^n=k^2+672$
自然数$(k,n)$をすべて求めよ.
この動画を見る 

福田の数学〜一橋大学2023年文系第1問〜コンビネーションの等式を満たす自然数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを2以上20以下の整数、kを1以上n-1以下の整数とする。
${}_{n+2}C_{k+1}$=2(${}_nC_{k-1}$+${}_nC_{k+1}$)
が成り立つような整数の組(n, k)を求めよ。

2023一橋大学文系過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第5問〜平面図形、チェバの定理、メネラウスの定理、方べきの定理

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
$\triangle ABC$において、辺$BC$を$7:1$に内分する点を$D$とし、辺$AC$を$7:1$に
内分する点を$E$とする。線分$AD$と線分$BE$の交点を$F$とし、直線$CF$
と辺$AB$の交点を$G$とすると

$\displaystyle \frac{GB}{AG}=\boxed{\ \ ア\ \ }, \displaystyle \frac{FD}{AF}=\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}, \displaystyle \frac{FC}{GF}=\displaystyle \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$

である。したがって

$\displaystyle \frac{\triangle CDGの面積}{\triangle BFGの面積}=\displaystyle \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}\displaystyle$

となる。

4点$B,D,F,G$が同一円周上にあり、かつ$FD=1$のとき

$AB=\boxed{\ \ ケコ\ \ }$

である。さらに、$AE=3\sqrt7$とするとき、$AE・AC=\boxed{\ \ サシ\ \ }$であり

$\angle AEG=\boxed{\ \ ス\ \ }$

である。$\boxed{\ \ ス\ \ }$に当てはまるものを、次の⓪~③のうちから一つ選べ。
⓪$\angle BGE$
①$\angle ADB$
②$\angle ABC$
③$\angle BAD$

2020センター試験過去問
この動画を見る 
PAGE TOP