【わかりやすく解説】複2次式の因数分解(置き換えの利用) - 質問解決D.B.(データベース)

【わかりやすく解説】複2次式の因数分解(置き換えの利用)

問題文全文(内容文):
$x^4-13x^2+36$を因数分解せよ
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$x^4-13x^2+36$を因数分解せよ
投稿日:2022.04.20

<関連動画>

福田のわかった数学〜高校1年生047〜三角形への応用(4)内心に関する問題

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
定義に従って$f(x)=x^n$を微分せよ.($n$は自然数)
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第1問(1)〜絶対不等式と2次関数の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)$a$を実数とする。

$x$の$2$次関数$f(x)=x^2-ax+a+2$は、

すべての実数$x$に対して$f(x)\geqq 0$を満たす。

(i)$a$の値の範囲は$\boxed{ア}$である。

(ii)$-2\leqq x\leqq 3$において、$f(x)$の最大値を$m$,

最大値を$M$とおく。

$m$が最大となるのは$a=\boxed{イ}$のときであり、

このとき$m=\boxed{ウ},M=\boxed{エ}$である。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

二乗の差は和と差の積

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-y^2=$
*図は動画内参照
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け5 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$k$は定数とする。2次関数$y=x^2+2kx+k$の最小値を$m$とする。
(1) $m$は$k$の関数である。$m$を$k$の式で表せ。
(2) $k$の関数$m$の最大値とそのときの$k$の値を求めよ。
この動画を見る 

「対偶法と背理法の証明②」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(3)
$\sqrt{ 2 }$が無理数であることを用いて$3-\sqrt{ 2 }$が無理数であることを示せ。

(4)
$\sqrt{ 6 }$が無理数であることを用いて$\sqrt{ 3 }-\sqrt{ 2 }$が無理数であることを示せ。

(5)
(ⅰ)$n^2$が$3$の倍数ならば、$n$が$3$の倍数であることを示せ。
(ⅱ)$\sqrt{ 3 }$が無理数であることを示せ。
この動画を見る 
PAGE TOP