【わかりやすく】ベクトルの成分の成分計算(数学B/平面ベクトル) - 質問解決D.B.(データベース)

【わかりやすく】ベクトルの成分の成分計算(数学B/平面ベクトル)

問題文全文(内容文):
$\vec{ a }=(-1,2),\vec{ b }=(2,-3)$のとき、次のベクトルを成分で表し、その大きさを求めよ。
(1)$2\vec{ a }$
(2)$-3\vec{ b }$
(3)$\vec{ a }+\vec{ b }$
(4)$3\vec{ b }-\vec{ a }$
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\vec{ a }=(-1,2),\vec{ b }=(2,-3)$のとき、次のベクトルを成分で表し、その大きさを求めよ。
(1)$2\vec{ a }$
(2)$-3\vec{ b }$
(3)$\vec{ a }+\vec{ b }$
(4)$3\vec{ b }-\vec{ a }$
投稿日:2022.04.29

<関連動画>

【数C】平面ベクトル:ベクトルの内積を基礎から

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの内積の公式を説明する動画です
この動画を見る 

福田の数学〜一橋大学2023年文系第3問〜ベクトルと四面体の体積の最大

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 原点をOとする座標空間内に3点A(-3, 2, 0), B(1, 5, 0), C(4, 5, 1)がある。
Pは|$\overrightarrow{PA}$+3$\overrightarrow{PB}$+2$\overrightarrow{PC}$|≦36 を満たす点である。
4点O, A, B, Pが同一平面上にないとき、四面体OABPの体積の最大値を求めよ。

2023一橋大学文系過去問
この動画を見る 

【数B】ベクトル:ベクトルの大きさを自由自在に扱おう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題617
$\vec{a}=(2,-1)$について、
(1)$\vec{a}$と平行な単位ベクトルを求めよ。
(2)$\vec{a}$と同じ向きで、大きさが5である$\vec{b}$を求めよ。
この動画を見る 

【数C】ベクトルの基本⑪平面ベクトルのときの三角形の面積の計算

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(-2,1),B(3,0),C(2,4)が与えられたとき、三角形ABCの面積を求めよ
この動画を見る 

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART2

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 
PAGE TOP