【数ⅢC】複素数平面の基本②複素数平面における絶対値の計算 - 質問解決D.B.(データベース)

【数ⅢC】複素数平面の基本②複素数平面における絶対値の計算

問題文全文(内容文):
次の複素数の絶対値を求めよ
(1)$-3+4i$ (2)$(1-2i)^2$ (3)$\dfrac{2+3i}{5-i}$
2点$A(\alpha),B(\beta)$間の距離を求めよ
(1)$\alpha=3+4i,\beta=7+5i$ (2)$\alpha=-3i,\beta=5$
チャプター:

0:00 オープニング
0:04 絶対値の計算
2:48 2点間の距離
3:48 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数の絶対値を求めよ
(1)$-3+4i$ (2)$(1-2i)^2$ (3)$\dfrac{2+3i}{5-i}$
2点$A(\alpha),B(\beta)$間の距離を求めよ
(1)$\alpha=3+4i,\beta=7+5i$ (2)$\alpha=-3i,\beta=5$
投稿日:2023.03.03

<関連動画>

16高知県教員採用試験(数学:2-(4) 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\fcolorbox{black}{ #fffff }{$2$}-(4)$
$z^3=8i$
をみたす複素数$z$をすべて求めよ。
この動画を見る 

#32 数検1級1次 過去問 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数平面#複素数#複素数平面#数学検定#数学検定1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$z:$複素数
方程式$z^2-z+i\bar{ z }=i$を解け。
この動画を見る 

福田の数学〜名古屋大学2023年理系第1問〜4次方程式の解と共役な複素数の性質

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数係数の4次方程式$x^4$$-px^3$$+qx^2$$-rx$$+s$=0 は相異なる複素数$\alpha$, $\bar{\alpha}$, $\beta$, $\bar{\beta}$を解に持ち、点1を中心とする半径1の円周上にあるとする。ただし、$\bar{\alpha}$, $\bar{\beta}$はそれぞれ $\alpha$, $\beta$と共役な複素数を表す。
(1)$\alpha$+$\bar{\alpha}$=$\alpha$$\bar{\alpha}$ を示せ。
(2)$t$=$\alpha$+$\bar{\alpha}$, $u$=$\beta$+$\bar{\beta}$とおく。p, q, r, sをそれぞれtとuで表せ。
(3)座標平面において、点(p, s)のとりうる範囲を図示せよ。

2023名古屋大学理系過去問
この動画を見る 

東京工業大学 三次方程式 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京工業大学'72過去問題
$x^3-x+k=0(k>0)$
絶対値が1の虚根をもつ。
3つの根を求めよ。
この動画を見る 

福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。

2023東京工業大学理系過去問
この動画を見る 
PAGE TOP