【数B】数列:等比数列の和 公比が4、第10項が4096である等比数列の初項を求めよ。 - 質問解決D.B.(データベース)

【数B】数列:等比数列の和 公比が4、第10項が4096である等比数列の初項を求めよ。

問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24のとき、第1項から第40項までの和を求めよ。
チャプター:

0:00 オープニング
0:08 問題の概要
1:50 辺々割ってみる
5:34 まとめ
6:34 エンディング

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24のとき、第1項から第40項までの和を求めよ。
投稿日:2023.03.03

<関連動画>

福田の一夜漬け数学〜数列・シグマ記号(2)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の和を求めよ。
(1)$2^2+4^2+6^2+8^2+\cdots+(2n)^2$
(2)$1・2・3+2・3・5+3・4・7+4・5・9+\cdots+n(n+1)(2n+1)$


次の数列の初項から第n項までの和を求めよ。
(1)$2, 2+4, 2+4+6, 2+4+6+8,\cdots$
(2)$1^2+1・2+2^2, 2^2+2・3+3^2, 3^2+3・4+4^2,\cdots$
(3)$1, 11, 111, 1111,\cdots$


次の数列の和を求めよ。
(1)$1・n, 3(n-1), 5(n-2) ,\cdots, (2n-3)・2, (2n-1)・1$
(2)$1^2・n, 2^2(n-1), 3^2(n-2),\cdots, (n-1)^2・2, n^2・1$
この動画を見る 

頑張って解いてほしい自作問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{111・・・・・・11}^{100桁}$
$243$で割った余りを求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第1問〜ガウス記号を含む数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 実数xに対して、x以下の最大の整数を[x]と表すことにする。\hspace{120pt}\\
いま、数列\left\{a_n\right\}を\hspace{290pt}\\
a_n=[\sqrt{2n}+\frac{1}{2}]\hspace{200pt}\\
と定義すると\hspace{316pt}\\
a_1=\boxed{\ \ ア\ \ },\ \ \ \ a_2=\boxed{\ \ イ\ \ },\ \ \ \ a_3=\boxed{\ \ ウ\ \ },\ \ \ \ a_4=\boxed{\ \ エ\ \ },\ \ \ \ a_5=\boxed{\ \ オ\ \ },\ \ \ \ a_6=\boxed{\ \ カ\ \ },\ \ \ \ \\
となる。このとき、a_n=10となるのは、\boxed{\ \ キク\ \ } \leqq n \leqq \boxed{\ \ ケコ\ \ }\ の場合に限られる。\hspace{20pt}\\
また、\sum_{n=1}^{\boxed{\ \ ケコ\ \ }}a_n=\boxed{\ \ サシスセ\ \ }である。\hspace{160pt}\\
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

【数学B】漸化式6パターンを20分でまとめてみた!【まとめ動画】

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
漸化式6パターン解き方解説動画です
この動画を見る 

福田の数学〜筑波大学2022年理系第2問〜確率漸化式と常用対数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 整数\ a_1,\ a_2,\ a_3,\ \ldotsを、さいころをくり返し投げることにより、以下のように\\
定めていく。まずa_1=1とする。そして、正の整数nに対し、a_{n+1}の値を、n回目に\\
出たさいころの目に応じて、次の規則で定める。\\
(\ 規則\ ) n回目に出た目が1,2,3,4ならa_{n+1}=a_n、5,6ならa_{n+1}=-a_n\\
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、\\
a_1=1,a_2=-1,a_3=-1,a_4=1となる。\\
a_n=1となる確率をp_nとする。ただし、p_1=1とし、さいころのどの目も、\\
出る確率は\frac{1}{6}であるとする。\\
(1)p_2,p_3を求めよ。\\
(2)p_{n+1}をp_nを用いて表せ。\\
(3)p_n \leqq 0.5000005を満たす最小の正の整数nを求めよ。\\
ただし、0.47 \lt \log_{10}3 \lt 0.48であることを用いてよい。\\
\end{eqnarray}

2022筑波大学理系過去問
この動画を見る 
PAGE TOP