数と式 式の展開①【化学のタカシーがていねいに解説】 - 質問解決D.B.(データベース)

数と式 式の展開①【化学のタカシーがていねいに解説】

問題文全文(内容文):
[ ]内の文字について降べきの順に整理せよ
$ax^2+bx-x^4+ax^2-ab [x]$
$2x^2+y^2-3xy-2y^2+3y+4xy-x^2-2x-5 [y]$
$ax^3+a^2x-2x^2-a^3-3ax^3+4a^3 [a]$
$a^2b+b^3+abc-a^2c-ac^2+bc^2-ab^2+c^3 [a]$

ある多項式から$3x^2-xy+2y^2$を引くところ
を誤って加えたため,答えが$2x^2+xy-y^2$
となった。正しい答えを求めよ

次の式を展開した時の[ ]内の項の係数を
求めよ
$(5a^3-3a^2b+7ab^2-2b^3)(3a^2+2ab-3b^2)[a^2b^3][a^3b^2]$
$(x+2y-z)(3x+4y+2z)(-x+y-3z)[xy^2][xyz]$
チャプター:

0:02  解説開始
2:23 ax²+bx-x⁴+ax²-ab [x]
3:20 2x²+y²-3xy-2y²+3y+4xy-x²-2x-5 [y]
6:47 ax³+a²x-2x²-a³-3ax³+4a³ [a]
9:00 a²b+b³+abc-a²c-ac²+bc²-ab²+c³ [a]
12:29 多項式の加減法
18:34 (5a³-3a²b+7ab²-2b³)(3a²+2ab-3b²)[a²b³][a³b²]
26:29 (x+2y-z)(3x+4y+2z)(-x+y-3z)[xy²][xyz]

単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
[ ]内の文字について降べきの順に整理せよ
$ax^2+bx-x^4+ax^2-ab [x]$
$2x^2+y^2-3xy-2y^2+3y+4xy-x^2-2x-5 [y]$
$ax^3+a^2x-2x^2-a^3-3ax^3+4a^3 [a]$
$a^2b+b^3+abc-a^2c-ac^2+bc^2-ab^2+c^3 [a]$

ある多項式から$3x^2-xy+2y^2$を引くところ
を誤って加えたため,答えが$2x^2+xy-y^2$
となった。正しい答えを求めよ

次の式を展開した時の[ ]内の項の係数を
求めよ
$(5a^3-3a^2b+7ab^2-2b^3)(3a^2+2ab-3b^2)[a^2b^3][a^3b^2]$
$(x+2y-z)(3x+4y+2z)(-x+y-3z)[xy^2][xyz]$
投稿日:2023.05.09

<関連動画>

和と差の積は? 灘高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(c-a)^2+3b^2 = 4b\\
(a-b)^2+3c^2 = 4c\\
b \neq c
\end{array}
\right.
\end{eqnarray}
$
aをb,cの1次式で表せ。

灘高等学校
この動画を見る 

【受験対策】数学-関数12

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図1は, $y = 2x,y = 3x,y =-2x,y =-3x$の
グラフをそれぞれ表している.
このとき,$y =-2x$のグラフを
ア~エから1つ選び,その記号を書きなさい.

右の図2で,直線$\ell$は関数$y =\dfrac{1}{2}x - 3$ のグラフ,
直線$m$は$y = \dfrac{1}{2}x + 5$ のグラフで,
2点,$A,B$は直線$\ell$上の点,2点$C,D$は直線$m$上の点で,
四角形$ABDC$は平行四辺形である.
点$A$の$x$座標が$-2$,点$B$の$y$座標が$-1$のとき,
次の②,③に答えなさい.

②点$C$の$x$座標が$3$のとき,点$D$の座標を求めなさい.

③ 四角形$ABDC$の面積を求めなさい.

図は動画内参照
この動画を見る 

2023高校入試解説16問目 3つの内接円 渋谷教育学園幕張

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle QPR=?$
*図は動画内参照

2023渋谷教育学園幕張高等学校
この動画を見る 

【数Ⅰ】数と式:根号の外し方 次の(1)~(3)の場合について、√(a-1)² + √(a-3)² の根号をはずし簡単にせよ。(1)a≧3、(2)1≦a<3、(3)a<1

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の(1)~(3)の場合について、$\sqrt{(a-1)^2}+\sqrt{(a-3)^2}$ の根号をはずし簡単にせよ。
(1)$a≧3$、(2)$1≦a<3$、(3)$a<1$
この動画を見る 

円と三角形の面積

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径=1
△ABC=?
*図は動画内参照

この動画を見る 
PAGE TOP