【数Ⅲ】双曲線関数について(関数として知っておこう!知識編) - 質問解決D.B.(データベース)

【数Ⅲ】双曲線関数について(関数として知っておこう!知識編)

問題文全文(内容文):
あまり学校で聞かない、双曲線関数の性質を教えます!(数学Ⅲにおける重要関数!)
y=(e^x+e^(-x))/2と表される、カテナリー曲線の一種とは??
チャプター:

00:00 そもそも関数としては何か?(導入)
00:20 媒介変数として…
01:11 カテナリー曲線を表す関数の1つとして…
01:49 積分によく用いる関数として…

単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
あまり学校で聞かない、双曲線関数の性質を教えます!(数学Ⅲにおける重要関数!)
y=(e^x+e^(-x))/2と表される、カテナリー曲線の一種とは??
投稿日:2022.04.15

<関連動画>

【高校数学】数Ⅲ-33 2次曲線の平行移動②

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の2次曲線の焦点を求めよ.

①楕円$4x^2+9y^2=24x$

②放物線$y^2-2y+8x+9=0$

③双曲線$9x^2-4y^2-18x+16y-43=0$
この動画を見る 

【数C】【平面上の曲線】x²/a²-y²/b²=1の焦点と漸近線の距離を求めよ

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
双曲線 $\displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$\ (a \gt 0,\ b \gt 0)$

の焦点と漸近線の距離を求めよ。
この動画を見る 

【数C】【平面上の曲線】辺が座標軸に平行な長方形が、楕円x²/16+y²/12=1に内接している。この長方形の周の長さが20であるとき、長方形の2辺の長さを求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説
指導講師: 理数個別チャンネル
問題文全文(内容文):
辺が座標軸に平行な長方形が、
楕円 $\displaystyle \frac{x^2}{16}+\frac{y^2}{12}=1$ に内接している。
この長方形の周の長さが $20$ であるとき、
長方形の $2$ 辺の長さを求めよ。
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(1)〜楕円と複素数平面

アイキャッチ画像
単元: #平面上の曲線#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#2次曲線#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面において、点$(-1,\ 0)$からの距離と点$(1,\ 0)$からの距離の和が4
である点は方程式$\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1$で表される曲線C上にある。点$(x,\ y)$
が曲線C上を動くとき、点$(x,\ y)$と点$(-1,\ 0)$の距離をdとおけば、dの最小値
は$\boxed{\ \ ウ\ \ }$、最大値は$\boxed{\ \ エ\ \ }$となる。複素数$z$が$|z|+|z-4|=8$を満たすとき、
$|z|$のとりうる範囲は$\boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }$である。

2021明治大学全統過去問
この動画を見る 

大学入試問題#133 京都大学(2009) 極方程式の曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
極方程式
$r=1+\cos\theta$
$(0 \leqq \theta \leqq \pi)$で表される曲線の長さ$l$を求めよ。

出典:2009年京都大学 入試問題
この動画を見る 
PAGE TOP