なぜ定積分で面積が求められるのか? #Shorts #毎日積分 #高校数学 - 質問解決D.B.(データベース)

なぜ定積分で面積が求められるのか? #Shorts #毎日積分 #高校数学

問題文全文(内容文):
なぜ定積分で面積が求められるのか?解説していきます.
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
なぜ定積分で面積が求められるのか?解説していきます.
投稿日:2024.01.22

<関連動画>

九州大 三次関数 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx+c(c \gt 0)$は$(c,0)$で$x$軸と接する。
$f(x)$と$x$軸とで囲まれる面積が最小となる$c$の値を求めよ

出典:2018年九州大学 過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第2問〜微分積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
(1)座標平面上で、次の二つの2次関数のグラフについて考える。
$y=3x^2+2x+3$ $\cdots$①
$y=2x^2+2x+3$ $\cdots$②

①、②の2次関数のグラフには次の共通点がある。

共通点
・$y$軸との交点の$y$座標は$\boxed{\ \ ア\ \ }$である。
・$y$軸との交点における接線の方程式は$y=\boxed{\ \ イ\ \ }x+\boxed{\ \ ウ\ \ }$である。

次の⓪~⑤の2次関数のグラフのうち、$y$軸との交点における接線の方程式
が$y=\boxed{\ \ イ\ \ }x+\boxed{\ \ ウ\ \ }$となるものは$\boxed{\boxed{\ \ エ\ \ }}$である。

$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪$y=3x^2-2x-3$
①$y=-3x^2+2x-3$
②$y=2x^2+2x-3$
③$y=2x^2-2x+3$
④$y=-x^2+2x+3$
⑤$y=-x^2-2x+3$

$a,b,c$を$0$でない実数とする。
曲線$y=ax^2+bx+c$上の点$\left(0, \boxed{\ \ オ\ \ }\right)$における接線をlとすると
その方程式は$y=\boxed{\ \ カ\ \ }x+\boxed{\ \ キ\ \ }$である。

接線$l$と$x$軸との交点の$x$座標は$\displaystyle \frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}$である。
$a,b,c$が正の実数であるとき、曲線$y=ax^2+bx+c$と接線lおよび直線
$x=\displaystyle \frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}$で囲まれた図形の面積をSとすると
$S=\displaystyle \frac{ac^{\boxed{サ}}}{\boxed{\ \ シ\ \ }\ b^{\boxed{ス}}}$ $\cdots$③
である。

③において、$a=1$とし、$S$の値が一定となるように正の実数$b,c$の値を
変化させる。このとき、$b$と$c$の関係を表すグラフの概形は$\boxed{\boxed{\ \ セ\ \ }}$る。


$\boxed{\boxed{\ \ セ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
(※選択肢は動画参照)

(2)座標平面上で、次の三つの3次関数のグラフについて考える。
$y=4x^3+2x^2+3x+5$ $\cdots$④
$y=-2x^3+7x^2+3x+5$ $\cdots$⑤
$y=5x^3-x^2+3x+5$ $\cdots$⑥

④、⑤、⑥の3次関数のグラフには次の共通点がある。
共通点
・$y$軸との交点の$y$座標は$\boxed{\ \ ソ\ \ }$である。
・$y$軸との交点における接線の方程式は$y=\boxed{\ \ タ\ \ }\ x+\boxed{\ \ チ\ \ }$である。

$a,b,c,d$を$0$でない実数とする。
曲線$y=ax^3+bx^2+cx+d$上の点$\left(0, \boxed{\ \ ツ\ \ }\right)$における接線の
方程式は$y=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }$である。

次に、$f(x)=ax^3+bx^2+cx+d,$ $g(x)=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }$とし、
$f(x)-g(x)$について考える。

$h(x)=f(x)-g(x)$とおく。$a,b,c,d$が正の実数であるとき、$y=h(x)$
のグラフの概形は$\boxed{\boxed{\ \ ナ\ \ }}$である。

$y=f(x)$のグラフと$y=g(x)$のグラフの共有点の$x$座標は$\displaystyle \frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}$
と$\boxed{\ \ ノ\ \ }$である。また、$x$が$\displaystyle \frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}$と$\boxed{\ \ ノ\ \ }$の間を動くとき、
$|f(x)-g(x)|$の値が最大となるのは、$x=\displaystyle \frac{\boxed{\ \ ハヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }}$のときである。

$\boxed{\boxed{\ \ ナ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
(※選択肢は動画参照)

2021共通テスト過去問
この動画を見る 

富山県立大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=kx$と$y=|x^2-2x|$とで囲まれる2つの部分の面積が等しい$k$の値を求めよ$(0 \gt k \gt 2)$

出典:2009年富山県立大学 過去問
この動画を見る 

【積分】積分がなぜ面積を求められるのかについて解説しました!【数学III】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
積分の原理を解説します。
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第2問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}} \ xの関数f(x)をf(x)=x^3とする。\hspace{190pt}\\
(1)xの関数g(x)をg(x)=x^3-2x^2-x+3とする。曲線y=f(x)とy=g(x)は\\
3個の交点をもつ。それら交点を\ x \ 座標が小さい順にA,B,Cとすると、\\
点A,B,Cの\ x\ 座標はそれぞれ-\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ },\ \boxed{\ \ ウ\ \ } である。\\
\\
曲線y=g(x)の接線の傾きが最小となるのは、接点の\ x\ 座標が\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}\ のときで、\\
\\
その最小値は-\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\ である。\\
\\
また、点Bを通るy=g(x)の接線の傾きの最小値は-\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\ である。\\
\\
\\
(2)\ x\ の関数h(x)が\\
\\
h(x)=-x^2+\frac{x}{6}\int_0^3h(t)dt+4\\
\\
を満たすとき、h(x)=-x^2+\boxed{\ \ コ\ \ }\ x+4\ \ である。\\
\\
曲線y=f(x)とy=h(x)の交点の中点は(\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }},\ \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }})であり、\\
\\
y=f(x)とy=h(x)で囲まれる図形の面積は\\
原点を通る直線y=\boxed{\ \ コ\ \ }\ xで2等分される。
\end{eqnarray}

2022明治大学全統過去問
この動画を見る 
PAGE TOP