【数Ⅲ-156】定積分の部分積分法② - 質問解決D.B.(データベース)

【数Ⅲ-156】定積分の部分積分法②

問題文全文(内容文):
数Ⅲ(定積分の部分積分法➁)
Q次の定積分の値を求めよ。

①$\int_1^ex^3 \log x \ dx$

➁$\int_0^1(1-x)e^xdx$

③$\int_0^\frac{\pi}{4}(x-2)\cos x\ dx$
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の部分積分法➁)
Q次の定積分の値を求めよ。

①$\int_1^ex^3 \log x \ dx$

➁$\int_0^1(1-x)e^xdx$

③$\int_0^\frac{\pi}{4}(x-2)\cos x\ dx$
投稿日:2020.08.22

<関連動画>

大学入試問題#146 東京工業大学(1966) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}xe^x\sin\ x\ dx$を計算せよ。

出典:1966年東京工業大学 入試問題
この動画を見る 

【数Ⅲ】【積分とその応用】定積分置換積分、部分積分 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次を求めよ
(1) $\displaystyle \int_0^1 \sqrt{e^{1-t}}~dt$
(2) $\displaystyle \int_0^{\frac{\pi}2}\frac{\cos{2\theta}}{\sin \theta+\cos\theta}~d\theta$
(3) $\displaystyle\int_0^\pi \sin^4x~dx$
(4) $\displaystyle \int_1^2 \frac{\sqrt{x^2-4x+4}}{x}~dx$

次を求めよ
(1) $\displaystyle \int_0^\pi |\cos2\theta|~d\theta$
(2) $\displaystyle \int_0^\pi|\sin x+\cos x|~dx$


$m,n$は正の整数とする。次の定積分を求めよ。
(1) $\displaystyle \int_0^\pi \cos mx\cos nx~dx$
(2) $\displaystyle \int_0^\pi \sin mx\sin nx~dx$
(3) $\displaystyle \int_0^\pi \sin mx\cos nx~dx$


定積分$\displaystyle \int_0^\pi (1-a\sin x-b\sin2x)^2~dx$を最小にする定数$a,b$の値を求めよ。
この動画を見る 

大学入試問題#556「技はかかりそうだけど、正面突破」 東京帝国大学大正14年 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x+\sin\ x}{1+\cos\ x} dx$

出典:大正14年東京大学 入試問題
この動画を見る 

【数Ⅲ-164】定積分と不等式の証明

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分と不等式の証明)

①$0≦x≦1$のとき、$1-x^2≦1-x^4≦1$が成り立つことを示せ。
②不等式$\frac{\pi}{4} \lt \int_0^1\sqrt{1-x^4}dx \lt 1$を示せ。
この動画を見る 

大学入試問題#458「これはさすがに落とせない!」 横浜国立大学(2000) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{log\ x}{(1+x)^2} dx$

出典:2000年横浜国立大学 入試問題
この動画を見る 
PAGE TOP