【数Ⅲ】極限:関数の極限 x=-tの置換 - 質問解決D.B.(データベース)

【数Ⅲ】極限:関数の極限 x=-tの置換

問題文全文(内容文):
次の極限を求めよう。
$\displaystyle \lim_{x\to-\infty}(\sqrt{x^2+2x+3}+x)$
チャプター:

0:00 オープニング
0:05 問題文
0:11 x→-∞のときはx=-tと置換する
0:37 式変形
0:57 有理化
1:30 分母の最高次で割る
2:10 不定形を解消してからx→0に
2:26 名言

単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を求めよう。
$\displaystyle \lim_{x\to-\infty}(\sqrt{x^2+2x+3}+x)$
投稿日:2021.09.21

<関連動画>

福田の数学〜筑波大学2023年理系第5問〜関数の増減と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $f(x)$=$x^{-2}e^x$ ($x$>0)とし、曲線$y$=$f(x)$をCとする。また$h$を正の実数とする。さらに、正の実数$t$に対して、曲線C、2直線$x$=$t$, $x$=$t$+$h$、および$x$軸で囲まれた図形の面積を$g(t)$とする。
(1)$g'(t)$を求めよ。
(2)$g(t)$を最小にする$t$がただ1つ存在することを示し、その$t$を$h$を用いて表せ。
(3)(2)で得られた$t$を$t(h)$とする。このとき極限値$\displaystyle\lim_{h \to +0}t(h)$を求めよ。
この動画を見る 

大学入試問題#467「基本すぎる極限問題」 電気通信大学(2013) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(1-\cos2x)\sin3x}{x^3}$

出典:2013年電気通信大学 入試問題
この動画を見る 

福田の数学〜東京大学2018年理系第1問〜関数の増減と極限の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\dfrac{x}{\sin x}+\cos x (0 \lt x \lt \pi)$のぞうげんひょうを作り、$x→+0,x→\pi-0$のときの極限を調べよ。

2018東京大学理過去問
この動画を見る 

福田のわかった数学〜高校3年生理系037〜極限(37)関数の極限、色々な極限(7)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(7)\\
\lim_{n \to \infty}n^2(\cos\frac{1}{n+1}-\cos\frac{1}{2n})を求めよ。
\end{eqnarray}
この動画を見る 

【数B・Ⅲ】漸化式と極限:連立漸化式:数列{x[n]},{y[n]}をx[1]=y[1]=1, x[n+1]=(2/3)x[n]+(1/6)y[n], y[n+1]=(1/3)x[n]+(5/6)y…

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$x_n$},{$y_n$}を$x_1=y_1=1, x_{n+1}=\dfrac{2}{3}x_n+\dfrac{1}{6}y_n, y_{n+1}=\dfrac{1}{3}x_n+\dfrac{5}{6}y_n$で定めるとき、
(1)$x_{n+1}+αy_{n+1}=\beta(x_n+αy_n)$を満たす$\alpha,\beta$の組を2組求めよう。
(2)数列{$x_n$},{$y_n$}の一般項を求めよう。
(3)数列{$x_n$},{$y_n$}の極限を求めよう。
この動画を見る 
PAGE TOP