【数Ⅱ】等式の証明:解と係数の関係の利用(防衛大学校) - 質問解決D.B.(データベース)

【数Ⅱ】等式の証明:解と係数の関係の利用(防衛大学校)

問題文全文(内容文):
$a\neq b, b\neq c, c\neq a$のとき、$a, b, c$が$ \dfrac{a^3+2a}{a+1} = \dfrac{b^3+2b}{b+1} = \dfrac{c^3+2c}{c+1} = k$ を満たすならば、次の各等式が成り立つことを証明せよ。
(1)$a+b+c=0$。
(2)$k=abc$
チャプター:

0:00 オープニング
0:05 問題文
0:20 考え方:①対称式は和と差で立式、②条件から式をイメージ
1:10 解答(1)
1:25 解答(2)
1:40 別解:解と係数の関係の利用
2:28 名言

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#防衛大学校#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a\neq b, b\neq c, c\neq a$のとき、$a, b, c$が$ \dfrac{a^3+2a}{a+1} = \dfrac{b^3+2b}{b+1} = \dfrac{c^3+2c}{c+1} = k$ を満たすならば、次の各等式が成り立つことを証明せよ。
(1)$a+b+c=0$。
(2)$k=abc$
投稿日:2021.09.13

<関連動画>

【祝早稲田合格】和男の勉強法と参考書を紹介【大学受験プロジェクト】新メンバーも募集

アイキャッチ画像
単元: #大学入試過去問(数学)#化学#学校別大学入試過去問解説(数学)#大学入試過去問(化学)#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#早稲田大学#数学(高校生)#理科(高校生)#早稲田大学#早稲田大学
指導講師: Morite2 English Channel
問題文全文(内容文):
衝撃スクープ!浪人を経てついに**早稲田合格**を勝ち取った**かず(和男)**の壮絶な裏側が暴露されるぞ!

藤川天のネガキャンで荒れ果てたチャンネルを、かずさんの合格がなんとか回復させたらしい。モリテツ先生が、合格祝いとして**早稲田大学の入学金20万円**を札束で直接手渡しする、生々しいシーンから動画がスタートだ。

かずさんの受験は波乱万丈だ。現役時代、**12月という超直前期**に塾に駆け込み、短期間でやれることだけを進捗管理してもらい、立教大学に合格。しかし進学はせず浪人を選んだ。

浪人中は、計画は**自分で組み**、川井先生に定期的に進捗確認や「本当に理解しているのか」を問う**質疑形式**でサポートを受けていた。数学に関してはレベルが高すぎて、もはや先生と**議論**するほどだったという。

使っていた参考書は、新しく買ったものはほとんどなく、浪人までにやったものを**クオリティを上げる作業**が中心だった。

* **単語帳**は『パス単』の1級レベルまで仕上げた。
* **数学**は『チャート』や『プラチカ』のハイレベルな部分で取りこぼしていたところを埋めた。
* **国語**(古文・漢文)は『古文上達 基礎編』や『漢文ヤマのヤマ』といった、**ド基礎**を時間をかけて染み込ませることに注力した。

そして最大の衝撃事実!かずさんは親に**内緒で受験**しており、なんと**合格発表の前日**までバレていなかった。親が心配で大学の入試情報を調べていたところ、息子がYouTubeに登場しているのを発見したという爆笑エピソードも飛び出した。

ついに始まる早稲田生活。入学式は**富山キャンパスの早稲田アリーナ**で行われるという。モリテツ先生とのTOEICプロジェクト始動の可能性 や、サークルは**テニサーではなく剣道を見に行く**という宣言にも注目だ。
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)整数$k$に対して、$x$の2次方程式$x^2+kx+k+35=0$の解を$\alpha_k,\beta_k$とおく。
ただし、方程式が重解をもつときは$\alpha_k=\beta_k$である。また$U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}$を全体集合とし、その部分集合$A=\{k|k \in U$かつ$\alpha_k,\beta_k$はともに実数で$\alpha_k\neq \beta_k\}$
$B=\{k|k \in U$かつ$\alpha_k,\beta_k$の実数はともに2より大きい$\}$
$C=\{k|k \in U$かつ$\alpha_k,\beta_k$の実部と虚部はすべて整数$\}$
を考える。このとき$n(A)=\boxed{\ \ (か)\ \ },$$n(A \cap B)=\boxed{\ \ (き)\ \ },$$n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },$
$n(A \cap C)=\boxed{\ \ (け)\ \ },$$n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }$である。ただし有限集合$X$に対してその要素の個数を$n(X)$で表す。また$\bar{ A }$は$A$の補集合である。

2021慶應義塾大学医学部過去問
この動画を見る 

#上智大学(2005) #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=x^2+x+2\displaystyle \int_{0}^{1} f(t) dt$を満たす関数$f(x)$を求めよ

出典:2005年上智大学
この動画を見る 

大学入試問題#808「難しすぎない良問」 #東京医科大学(2009) #整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学
指導講師: ますただ
問題文全文(内容文):
不等式$\sqrt{ n+1 }-\sqrt{ n } \gt \displaystyle \frac{1}{100}$を満たす正の整数$n$の最大値を求めよ。

出典:2009年東京医科大学 入試問題
この動画を見る 

大学入試問題#669「標準運転」 東京女子医科大学(2002) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京女子医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \displaystyle \frac{(log\ x)^2}{x^3} dx$

出典:2002年東京女子医科大学 入試問題
この動画を見る 
PAGE TOP