福田の数学〜東京医科歯科大学2023年医学部第3問〜積分で定義された関数と極限 - 質問解決D.B.(データベース)

福田の数学〜東京医科歯科大学2023年医学部第3問〜積分で定義された関数と極限

問題文全文(内容文):
$\Large\boxed{3}$ $a$,$b$を正の実数、$p$を$a$より小さい正の実数とし、すべての実数$x$について
$\displaystyle\int_p^{f(x)}\frac{a}{u(a-u)}du$=$bx$, 0<$f(x)$<$a$
かつ$f(0)$=$p$を満たす関数$f(x)$を考える。このとき以下の問いに答えよ。
(1)$f(x)$を$a$,$b$,$p$を用いて表せ。
(2)$f(-1)$=$\frac{1}{2}$, $f(1)$=1, $f(3)$=$\frac{3}{2}$のとき、$a$,$b$,$p$を求めよ。
(3)(2)のとき、$\displaystyle\lim_{x \to -\infty}f(x)$, $\displaystyle\lim_{x \to \infty}f(x)$ を求めよ。
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$,$b$を正の実数、$p$を$a$より小さい正の実数とし、すべての実数$x$について
$\displaystyle\int_p^{f(x)}\frac{a}{u(a-u)}du$=$bx$, 0<$f(x)$<$a$
かつ$f(0)$=$p$を満たす関数$f(x)$を考える。このとき以下の問いに答えよ。
(1)$f(x)$を$a$,$b$,$p$を用いて表せ。
(2)$f(-1)$=$\frac{1}{2}$, $f(1)$=1, $f(3)$=$\frac{3}{2}$のとき、$a$,$b$,$p$を求めよ。
(3)(2)のとき、$\displaystyle\lim_{x \to -\infty}f(x)$, $\displaystyle\lim_{x \to \infty}f(x)$ を求めよ。
投稿日:2023.07.25

<関連動画>

【数Ⅲ】【関数と極限】a₁=1/35、1/an+₁=1/an +8n+20によって定められる数列{an}について、次の問いに答えよ。(1) anをnの式で表せ。(2) 無限級数Σanの和を求めよ。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列 $\{a_n\}$ は以下のように定められる数列について、次の問いに答えよ

$a_1 = \frac{1}{35}$,$\quad \frac{1}{a_{n+1}} = \frac{1}{a_n} + 8n + 20 \quad$ $(n = 1, 2, 3, \ldots)$

(1)$a_n$を$n$ の式で表せ。
(2)無限級数 $\displaystyle \sum_{n=1}^{\infty} a_n$ の和を求めよ。
この動画を見る 

奇数の4乗の逆数の和 オイラー級数 πが登場

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{1}{1^4}+\frac{1}{3^4}+\frac{1}{5^4}+\frac{1}{7^4}+\cdots=\dfrac{\pi^4}{96}$
この動画を見る 

慶應(医)3次方程式 ほぼ文系知識で解けます Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$8x^3-6x+1=0$の3つの解をα,β,γ
(1)0<x<1の範囲にある実数解の個数
(2)$\displaystyle\sum_{n=0}^{\infty}(α^n+β^n+γ^n)$
この動画を見る 

【数Ⅲ】極限:極限の定形不定形をマスターしよう!

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
極限の考え方の基本です。変形が必要な場合と必要でない場合の違いをチェックしましょう!
この動画を見る 

福田の数学〜東京工業大学2024年理系第3問〜点列と漸化式の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $xy$平面上に、点A($a$,0), B(0,$b$), C($-a$,0)(ただし0<$a$<$b$)をとる。点A,Bを通る直線を$l$とし、点Cを通り線分BCに垂直な直線を$k$とする。さらに、点Aを通り$y$軸に平行な直線と直線$k$との交点を$C_1$とし、点$C_1$を通り、$x$軸に平行な直線と直線$l$との交点を$A_1$とする。以下、$n$=1,2,3,...に対して、点$A_n$を通り$y$軸に平行な直線と直線$k$との交点を$C_{n+1}$、点$C_{n+1}$を通り$x$軸に平行な直線と直線$l$との交点を$A_{n+1}$とする。
(1)点$A_n$, $C_n$の座標を求めよ。
(2)△$CBA_n$の面積$S_n$を求めよ。
(3)$\displaystyle\lim_{n \to \infty}\frac{BA_n}{BC}$を求めよ。
この動画を見る 
PAGE TOP