福田の数学〜早稲田大学2023年人間科学部第1問(1)〜互いに素な整数を選ぶ確率 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年人間科学部第1問(1)〜互いに素な整数を選ぶ確率

問題文全文(内容文):
$\Large\boxed{1}$ (1)2,3,4,...,13の12個の整数の中から異なる2個を無作為に取り出したとき、それら2個の整数が互いに素となる確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)2,3,4,...,13の12個の整数の中から異なる2個を無作為に取り出したとき、それら2個の整数が互いに素となる確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
投稿日:2023.08.13

<関連動画>

福田の数学〜中央大学2021年経済学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 1辺の長さが1の正方形の頂点を時計回りにA,B,C,Dとする。点PはAから\\
出発し、硬貨を投げるたびに正方形の周上を時計回りに動く。1枚の硬貨を投げて\\
表が出たときにはPは2だけ進み、裏が出たときにはPは1だけ進む。硬貨を投げた\\
ときに、表と裏の出る確率は等しいとする。このとき以下の問いに答えよ。\\
\\
(1)硬貨を5回続けて投げたとき、PがAにいる確率を求めよ。\\
(2)硬貨を10回続けて投げたとき、PがDにいる確率を求めよ。
\end{eqnarray}

2021中央大学経済学部過去問
この動画を見る 

福田のわかった数学〜高校1年生064〜場合の数(3)約数の個数と総和

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(3) 約数の総和\\
600の正の約数の個数と総和を求めよ。\\
また、正の約数のうち、偶数であるものの\\
個数とその総和を求めよ。
\end{eqnarray}
この動画を見る 

場合の数 集合~ベン図にまとめよう~【さこすけ's サイエンスがていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある地区で、新聞Aを購読している世帯は全体の50%、新聞Bを購読して
いる世帯は全体の60%、両方を購読している世帯は全体の30%、どちら
も購読していない世帯は8世帯であった。このとき、Aだけを購読している
世帯は全体の何%か。また、この地区の世帯数を求めよ。

海外旅行者100人のうち、75人がカゼ薬を、80人が胃薬を携帯して
いた。次のような人は、最も多くて何人か。また少なくて何人か。
(1)カゼ薬と胃薬を両方とも携帯した人
(2)カゼ薬と胃薬を両方とも携帯してない人
この動画を見る 

福田のわかった数学〜高校1年生071〜場合の数(10)組み分け

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(10) 組み分け\hspace{50pt}\\
次のような分け方は何通りか。\\
(1)4人を2人ずつA,Bの2組に分けるとき\\
(2)4人を2人ずつの2組に分けるとき\\
(3)5人を3人、2人の2組に分けるとき\\
(4)6人を2人ずつの3組に分けるとき\\
(5)6人を3組に\\
(6)n人を3組に (n \geqq 3)\\
\end{eqnarray}
この動画を見る 

福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。

2023東京工業大学理系過去問
この動画を見る 
PAGE TOP