福田の数学〜上智大学2023年理工学部第3問〜対数関数の積分と数学的帰納法 - 質問解決D.B.(データベース)

福田の数学〜上智大学2023年理工学部第3問〜対数関数の積分と数学的帰納法

問題文全文(内容文):
$\Large\boxed{3}$ $e$を自然定数の底とする。自然数$n$に対して、
$S_n$=$\displaystyle\int_1^e(\log x)^n dx$
とする。
(1)$S_1$の値を求めよ。
(2)すべての自然数$n$に対して、
$S_n$=$a_n e$+$b_n$, ただし$a_n$, $b_n$はいずれも整数
と表されることを証明せよ。
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $e$を自然定数の底とする。自然数$n$に対して、
$S_n$=$\displaystyle\int_1^e(\log x)^n dx$
とする。
(1)$S_1$の値を求めよ。
(2)すべての自然数$n$に対して、
$S_n$=$a_n e$+$b_n$, ただし$a_n$, $b_n$はいずれも整数
と表されることを証明せよ。
投稿日:2023.09.25

<関連動画>

鳥取大 3項間漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人鳥取大学

$a_1=1,$$a_2=2$
$a_n$$_+$$_2$$a_{n+2}a_{n}=2(a_{n+1})^2$

$(1)$一般項$a_n$
$(2)$初項から第$n$項までの積

この動画を見る 

福田のおもしろ数学366〜漸化式で定義された数列の周期性を示す

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列 ${x_n}$ が $x_1$ を正の整数とし、
$
x_{n+1} =
\begin{cases}
\frac{1}{2}x_n & (x_n\text{ が偶数})\\
a+x_n & (x_n\text{ が奇数})
\end{cases}
$
($a$ は正の奇数) を満たしている。この数列の周期性を示せ。
この動画を見る 

福田の数学〜回転の概念を使って考えるよ〜北里大学2023年医学部第3問〜ベクトルの漸化式と点列

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#ベクトルと平面図形、ベクトル方程式#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に 3 点 $A_{0} ( 0 , 0 ), B_{0} ( 2 , 0 ), C_{0}( 1 ,\sqrt{ 3 })$があり、線分$A_{0}B_{0},B_{0}C_{0},C_{0}A_{0}$をそれぞれ 2 : 1 に内分する点 $A_{1} ,B_{1} ,C_{1}$をとる。以下同様にして、正の整数nに対し、線分$A_{n}B_{n},B_{n}C_{n},C_{n}A_{n}$をそれぞれ 2 : 1 に内分する点$A_{n+1},B_{n+1},C_{n+1}$をとる。また、$\overrightarrow{ P_{n} }=\overrightarrow{ B_{n-1}B_{n} }(n=1,2,3,・・・)$とおく。
(1)$\overrightarrow{ p_{1} },\overrightarrow{ p_{2} }$をそれぞれ成分表示せよ。
(2)$\overrightarrow{ p_{n+2} }を\overrightarrow{ p_{n} }$を用いて表せ。
(3)$\displaystyle \sum_{k=1}^n \overrightarrow{ p_{2k-1}}$を$\overrightarrow{ p-1}$を用いて表せ。
(4)点B_{2n}の座標を求めよ。

2023北里大学医過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る 

【高校数学】 数B-64 等差数列とその和⑦

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
等差数列$\{a_n\}$は,第5項が100,第10項が85である.

①初項から第$n$項までの和$S_n$が負となる最小の$n$の値を求めよう.

②和$S_n$が最大となる$n$の値と,そのときの最大値を求めよう.
この動画を見る 
PAGE TOP