問題文全文(内容文):
実数$x,y$が$x^2+y^2=1$を満たすとき、$5x^2+4xy+y^2$の最大値を$M,$最小値を$m$とする。
$\displaystyle \frac{(M-m)^2}{4}$の値を求めよ。
出典:2024年自治医科大学
実数$x,y$が$x^2+y^2=1$を満たすとき、$5x^2+4xy+y^2$の最大値を$M,$最小値を$m$とする。
$\displaystyle \frac{(M-m)^2}{4}$の値を求めよ。
出典:2024年自治医科大学
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
ますただ
問題文全文(内容文):
実数$x,y$が$x^2+y^2=1$を満たすとき、$5x^2+4xy+y^2$の最大値を$M,$最小値を$m$とする。
$\displaystyle \frac{(M-m)^2}{4}$の値を求めよ。
出典:2024年自治医科大学
実数$x,y$が$x^2+y^2=1$を満たすとき、$5x^2+4xy+y^2$の最大値を$M,$最小値を$m$とする。
$\displaystyle \frac{(M-m)^2}{4}$の値を求めよ。
出典:2024年自治医科大学
投稿日:2024.08.22