大学入試問題#870「基本問題」 #東北大学医学部AO(2019) #数列 - 質問解決D.B.(データベース)

大学入試問題#870「基本問題」 #東北大学医学部AO(2019) #数列

問題文全文(内容文):
$S_n=2a_n+3n$を満たす数列$\{a_n\}$の一般項$a_n$を求めよ。

出典:2019年東北大学医学部AO
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$S_n=2a_n+3n$を満たす数列$\{a_n\}$の一般項$a_n$を求めよ。

出典:2019年東北大学医学部AO
投稿日:2024.07.10

<関連動画>

大学入試問題#743「単なる場合分け?」 早稲田大学政治経済学部(2003) #対数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \gt 0,a \neq 1$とする。
このとき、$x$の不等式$log_a(x+2) \geq log_{a^2}(3x+16)$を解け

出典:2003年早稲田大学政治経済学部 入試問題
この動画を見る 

福田の数学〜千葉大学2023年第3問〜2次関数と定積分で表された関数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。
(1)$p$を実数とする。曲線$y$=|$x^2$+$x$-2|と直線$y$=$x$+$p$ の共有点の個数を求めよ。
(2)等式$f(x)$=$x^2$+$\displaystyle\int_{-1}^2(xf(t)-t)dt$ を満たす関数$f(x)$を求めよ。
この動画を見る 

福田の数学〜筑波大学2022年理系第6問〜複素数平面上の点の軌跡と最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$i$は虚数単位とする。次の条件$(\textrm{I}),(\textrm{II})$のどちらも満たす複素数z全体の集合を
Sとする。
$(\textrm{I})z$の虚部は正である。
$(\textrm{II})$複素数平面上の点$A(1),B(1-iz),C(z^2)$は一直線上にある。
このとき、以下の問いに答えよ。
(1)1でない複素数$\alpha$について、$\alpha$の虚部が正であることは、$\frac{1}{\alpha-1}$の虚部が
負であるための必要十分条件であることを示せ。
(2)集合Sを複素数平面上に図示せよ。
(3)$w=\frac{1}{z-1}$とする。zがSを動くとき、$|w+\frac{i}{\sqrt2}|$の最小値を求めよ。

2022筑波大学理系過去問
この動画を見る 

積分区間は0→π/4です。大学入試問題#900「減点ポイント多い問題」 #横浜国立大学後期(2023)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$n$を正の整数とする。
関数$F(x)=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{2e^x\cos t\sin t}{(\cos^2t+x^n\sin^2t)^2} dt$
について、次の問いに答えよ。
ただし、$x \gt 0$とする。
1.$F(x)$を求めよ。
2.$F(x)$が極値をもつ最小の$n$の値を求めよ。

出典:2023年横浜国立大学後期
この動画を見る 

京都大 4次方程式の解の個数 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^2+ax+1)(3x^2+ax-3)=0$
この方程式の実数解の個数は?

出典:2008年京都大学 過去問
この動画を見る 
PAGE TOP