#宮崎大学(2015) #定積分 - 質問解決D.B.(データベース)

#宮崎大学(2015) #定積分

問題文全文(内容文):
$\displaystyle \int_{1}^{2} x^5e^{x^3} dx$

出典:2015年宮崎大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} x^5e^{x^3} dx$

出典:2015年宮崎大学
投稿日:2024.06.05

<関連動画>

福田の数学〜接線と放物線で囲まれた面積3連発だ〜早稲田大学2023年社会科学部第1問〜接線と放物線で囲まれた面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ 曲線$y$=$ax^2$+$b$上に$x$座標が$p$である点Pをとり、点Pにおける接線を$l$とする。ただし、定数$a$,$b$は$a$>0, $b$>0とする。次の問いに答えよ。
(1)接線$l$の方程式を$a$,$b$,$p$を用いて表せ。
(2)接線$l$と曲線$y$=$ax^2$で囲まれた図形の面積Sを$a$,$b$を用いて表せ。
(3)接線$l$と曲線$y$=$ax^2$+$\frac{b}{2}$で囲まれた図形の面積をS'としたとき、S'をSを用いて表せ。
(4)接線$l$と曲線$y$=$ax^2$+$c$で囲まれた図形の面積をS''とする。S"=$\frac{S}{2}$のとき、$c$を$a$,$b$を用いて表せ。ただし、$b$>$c$とする。
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第5問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問5(2)
aを正の実数とする。$n=1,2,3,…$に対して、
$I_n=\displaystyle \int_{0}^{1}x^{n+a-1}e^{-x}dx$
と定める。次の問に答えよ。
(1)$n=1,2,3,…$に対して、$I_n\leqq \dfrac{1}{n+a}$を示せ。
(2)$n=1,2,3,…$に対して、$I_{n+1}-(n+a)I_n$を求めよ。
(3)極限値$\displaystyle \lim_{n\to\infty}nI_n$を求めよ。
(4)実数b,cに対して、$J_n=n^3\left(I_n+\dfrac{b}{n}+\dfrac{c}{n^2}\right)(n=1,2,3,…)$と定める。数列{$J_n$}が収束するとき、次の問いに答えよ。
(ア)bを求めよ。
(イ)cをaの式で表せ。
(ウ)極限値$\displaystyle \lim_{n\to\infty}J_n$をaの式で表せ。
この動画を見る 

大学入試問題#672「最近、このタイプが流行り?」 早稲田大学商学部(2022)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
実数$x,y$が$x^2+y^2 \leqq 3$を満たしているとき$x-y-xy$の最大値を求めよ

出典:2022年早稲田大学商学部 入試問題
この動画を見る 

【高校数学】毎日積分67日目~47都道府県制覇への道~【⑪徳島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle f(x)=\frac{2x^2-x-1}{x^2+2x+2}$とする。
(1)$\displaystyle\lim_{x\to -\infty} f(x)$および$\displaystyle \lim_{x\to \infty} f(x)$を求めよ。
(2)導関数$f'(x)$を求めよ。
(3)関数$y=f(x)$の最大値と最小値を求めよ。
(4)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ。
【徳島大学 2023】
この動画を見る 

大学入試問題#626「一直線だが、最後まで気を抜かない」 横浜市立大学医学部(2007)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$n$:自然数
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin\{(2n+1)\theta\}\cos\theta d\theta$

出典:2007年横浜市立大学 入試問題
この動画を見る 
PAGE TOP