大学入試問題#834「置換一択!?」 #弘前大学(2022) #定積分 - 質問解決D.B.(データベース)

大学入試問題#834「置換一択!?」 #弘前大学(2022) #定積分

問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{\sqrt{ 3 }}^{2} (3x-1)\sqrt{ 4-x^2 }\ dx$

出典:2022年広前大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{\sqrt{ 3 }}^{2} (3x-1)\sqrt{ 4-x^2 }\ dx$

出典:2022年広前大学 入試問題
投稿日:2024.05.29

<関連動画>

良問を出す大学5選~受けなくても、練習問題に最適な大学はコレだ!【篠原好】

アイキャッチ画像
単元: #センター試験・共通テスト関連#共通テスト#共通テスト(現代文)#共通テスト・センター試験#共通テスト(古文)#共通テスト#大阪大学#防衛大学校#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#大阪大学#共通テスト#共通テスト#共通テスト#共通テスト#共通テスト#共通テスト#北海道大学#青山学院大学#青山学院大学
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
受けなくても、練習問題に最適な大学はコレだ!
「良問を出す大学5選」の紹介です。
この動画を見る 

大学入試問題#108 弘前大学(2018) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{(e^{2x}+a)(e^{-2x}+a)}\ $を計算せよ。

出典:2018年弘前大学 入試問題
この動画を見る 

大学入試問題#836「このタイプの問題ばかり探していますw」 #長崎大学(2024) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x^2-x^4}{1+e^x}dx$

出典:2024年長崎大学
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x$$-(t^2+2)y+4t+2=0$
を考える。

(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。

(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。

(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 

早稲田 微分・積分 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
$f(x)=(x+\frac{1}{2})^2,g(x)=\int_a^x f(t) dt$
$y=f(x)$と$y=g(x)$が異なる3点で交わるようなaの範囲
この動画を見る 
PAGE TOP