大学入試問題#810「難易度高めの良問」 #日本医科大学(2015) #区分求積法 僚太さんの紹介問題です - 質問解決D.B.(データベース)

大学入試問題#810「難易度高めの良問」 #日本医科大学(2015) #区分求積法 僚太さんの紹介問題です

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{1}{n+\displaystyle \frac{1}{2}}+\displaystyle \frac{1}{n+\displaystyle \frac{3}{2}}+\displaystyle \frac{1}{n+\displaystyle \frac{5}{2}}+・・・+\displaystyle \frac{2}{6n-1})$

出典:2015年日本医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{1}{n+\displaystyle \frac{1}{2}}+\displaystyle \frac{1}{n+\displaystyle \frac{3}{2}}+\displaystyle \frac{1}{n+\displaystyle \frac{5}{2}}+・・・+\displaystyle \frac{2}{6n-1})$

出典:2015年日本医科大学 入試問題
投稿日:2024.05.05

<関連動画>

【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。 (2)弦ABの長さが最大になるときのaの値を求めなさい。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とする。円$x^2+y^2-4x-8y+15=0$と直線$y=ax+1$が 異なる2点A,Bで交わっている。 (2)弦ABの長さが最大になるときのaの値を求めなさい。
この動画を見る 

大学入試問題#308 お茶の水女子大学(2010) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2}x\ 2^xdx$

出典:2010年お茶の水女子大学 入試問題
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第2問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問2(1)
次の問いに答えよ。
(1)実数A,B,C,Dに対して、複素数zを
$z=\dfrac{A+\sqrt5 Bi}{C+\sqrt5 Di}$
で定める。ただし、$C+\sqrt5 Di\neq 0$とする。このとき、$x=x+yi$をみたす実数x,yをA,B,C,Dの式で表せ。
(2)次をみたす整数A,B,C,Dを求めよ。
$\dfrac{16+\sqrt5 i}{29}=\dfrac{A+\sqrt5 Bi}{C+\sqrt5 Di}$
$AD-BC=-1$
$D\gt 0$
この動画を見る 

大学入試問題#228 愛知教育大学(2012) 3乗根の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#愛知教育大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\sqrt[ 3 ]{ 5\sqrt{ 2 }+7 }-\sqrt[ 3 ]{ 5\sqrt{ 2 }-7 }$

(1)$\alpha^3$を$\alpha$で表せ
(2)$\alpha$は整数であることを示せ

出典:2012年愛知教育大学 入試問題
この動画を見る 

島根大 4次関数 接線 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=m(x-1)$と$y=(x-1)(x+a)(x-a)^2$が接するときの$m$の値。
ただし、$a$は$0 \lt a \lt 1$の定数

出典:島根大学 過去問
この動画を見る 
PAGE TOP