問題文全文(内容文):
実数$x$に対して、$x$を超えない最大の整数を$[x]$で表す。
次の値を求めよ。
$[\sqrt{ \sqrt[ 3 ]{ 3 }+\displaystyle \frac{2}{\sqrt[ 3 ]{ 3 }-1} }]$
出典:2022年富山大学 入試問題
実数$x$に対して、$x$を超えない最大の整数を$[x]$で表す。
次の値を求めよ。
$[\sqrt{ \sqrt[ 3 ]{ 3 }+\displaystyle \frac{2}{\sqrt[ 3 ]{ 3 }-1} }]$
出典:2022年富山大学 入試問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師:
ますただ
問題文全文(内容文):
実数$x$に対して、$x$を超えない最大の整数を$[x]$で表す。
次の値を求めよ。
$[\sqrt{ \sqrt[ 3 ]{ 3 }+\displaystyle \frac{2}{\sqrt[ 3 ]{ 3 }-1} }]$
出典:2022年富山大学 入試問題
実数$x$に対して、$x$を超えない最大の整数を$[x]$で表す。
次の値を求めよ。
$[\sqrt{ \sqrt[ 3 ]{ 3 }+\displaystyle \frac{2}{\sqrt[ 3 ]{ 3 }-1} }]$
出典:2022年富山大学 入試問題
投稿日:2024.04.18