福田の数学〜慶應義塾大学2024年経済学部第6問〜3次関数の増減と最大値と面積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年経済学部第6問〜3次関数の増減と最大値と面積

問題文全文(内容文):
$\Large{\boxed{6}}$ $a$,$b$,$p$を実数とする。関数$f(x)$=$x^3$+$ax^2$+$bx$+17 は$x$=$p$で極大値、$x$=$-4p$で極小値をとり、$f(-2p)$=-17 を満たすとする。
(1)$a$,$b$,$p$の値、および$f(x)$の極大値$M$、極大値$m$を、それぞれ求めよ。
(2)(1)で求めた$a$,$b$および0≦$t$≦5 を満たす実数$t$に対して、区間0≦$x$≦$t$ における|$f(x)$|の最大値を$g(t)$とする。$t$の値について場合分けをして、それぞれの場合に$g(t)$を求めよ。
(3)(2)で求めた$g(t)$に対して、定積分$I$=$\displaystyle\int_0^5g(t)dt$ を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{6}}$ $a$,$b$,$p$を実数とする。関数$f(x)$=$x^3$+$ax^2$+$bx$+17 は$x$=$p$で極大値、$x$=$-4p$で極小値をとり、$f(-2p)$=-17 を満たすとする。
(1)$a$,$b$,$p$の値、および$f(x)$の極大値$M$、極大値$m$を、それぞれ求めよ。
(2)(1)で求めた$a$,$b$および0≦$t$≦5 を満たす実数$t$に対して、区間0≦$x$≦$t$ における|$f(x)$|の最大値を$g(t)$とする。$t$の値について場合分けをして、それぞれの場合に$g(t)$を求めよ。
(3)(2)で求めた$g(t)$に対して、定積分$I$=$\displaystyle\int_0^5g(t)dt$ を求めよ。
投稿日:2024.07.03

<関連動画>

【高校数学】数Ⅱ:微分法と積分法:定積分と面積:1/6公式を用いて曲線で囲まれた図形の面積を求める!【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線または直線で囲まれた図形の面積Sを求めよ。
$y=x^2+3x,y=-x^2-x+6$
この動画を見る 

福井大 微分積分いい気分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#面積、体積#数学(高校生)#福井大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2016福井大学過去問題
$f(x)=x^3,g(x)=x^3-4$
①f(x),g(x)の両方と接する直線l
②g(x)とlとで囲まれる面積
この動画を見る 

数学「大学入試良問集」【11−3 円と放物線(面積)】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#熊本大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
点$A$を中心とする円$x^2+(y-a)^2=bb^2$が、放物線$y=x^2$と異なる2点$P,Q$で接している。
ただし、$a \gt \displaystyle \frac{1}{2}$とする。
次の各問いに答えよ。

(1)$a$と$b$の関係式を求めよ。
(2)$\triangle APQ$が正三角形のとき、円と放物線で囲まれた三日月形の面積を求めよ。
この動画を見る 

【数Ⅱ】微分法と積分法:x軸の周りに1回転してできる回転体の体積の考え方! 次の直線で囲まれた図形をx軸の周りに1回転してできる回転体の体積を求めよ。y=2x+3,x=0,x=2,x軸

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の直線で囲まれた図形をx軸の周りに1回転してできる回転体の体積を求めよ。
y=2x+3
x=0
x=2
x軸
この動画を見る 

文系積分の基本 法政大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#法政大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
法政大学過去問題
a<0
$f(x)=\frac{1}{3}x^3-\frac{a+2}{2}x^2+2ax-\frac{7}{6}$
f(x)はx軸と接する
f(x)とx軸とで囲まれた面積
この動画を見る 
PAGE TOP