福田の数学〜慶應義塾大学2024年経済学部第6問〜3次関数の増減と最大値と面積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年経済学部第6問〜3次関数の増減と最大値と面積

問題文全文(内容文):
$\Large{\boxed{6}}$ $a$,$b$,$p$を実数とする。関数$f(x)$=$x^3$+$ax^2$+$bx$+17 は$x$=$p$で極大値、$x$=$-4p$で極小値をとり、$f(-2p)$=-17 を満たすとする。
(1)$a$,$b$,$p$の値、および$f(x)$の極大値$M$、極大値$m$を、それぞれ求めよ。
(2)(1)で求めた$a$,$b$および0≦$t$≦5 を満たす実数$t$に対して、区間0≦$x$≦$t$ における|$f(x)$|の最大値を$g(t)$とする。$t$の値について場合分けをして、それぞれの場合に$g(t)$を求めよ。
(3)(2)で求めた$g(t)$に対して、定積分$I$=$\displaystyle\int_0^5g(t)dt$ を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{6}}$ $a$,$b$,$p$を実数とする。関数$f(x)$=$x^3$+$ax^2$+$bx$+17 は$x$=$p$で極大値、$x$=$-4p$で極小値をとり、$f(-2p)$=-17 を満たすとする。
(1)$a$,$b$,$p$の値、および$f(x)$の極大値$M$、極大値$m$を、それぞれ求めよ。
(2)(1)で求めた$a$,$b$および0≦$t$≦5 を満たす実数$t$に対して、区間0≦$x$≦$t$ における|$f(x)$|の最大値を$g(t)$とする。$t$の値について場合分けをして、それぞれの場合に$g(t)$を求めよ。
(3)(2)で求めた$g(t)$に対して、定積分$I$=$\displaystyle\int_0^5g(t)dt$ を求めよ。
投稿日:2024.07.03

<関連動画>

福田の数学〜上智大学2023年TEAP利用型文系第4問(3)〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (3)$a$を定数とする。座標平面上の直線$y$=2$ax$+$\frac{1}{4}$と放物線$y$=$x^2$の2つの交点を$P_1$, $P_2$とする。$a$が0≦$a$≦1の範囲を動くとき、線分$P_1P_2$の通過する部分の面積は$\frac{\boxed{\ \ ル\ \ }}{\boxed{\ \ レ\ \ }}$である。
この動画を見る 

積分で面積が出る理由

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
積分をするとどうして面積が出るの?

仕組みを解説します!
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2。微分積分の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[1]aを実数とし、$f(x)=x^3-6ax+16$
(1)$y=f(x)$のグラフの概形は
$a=0$のとき、$\boxed{\ \ ア\ \ }$
$a \gt 0$のとき、$\boxed{\ \ イ\ \ }$
である.

$\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }$については、最も適当なものを、次の⓪~⑤のうちから
1つずつ選べ。ただし、同じものを繰り返し選んでもよい。
(※選択肢は動画参照)

(2)$a \gt 0$とし、pを実数とする。座標平面上の曲線$y=f(x)$と直線$y=p$
が3個の共有点をもつようなpの値の範囲は$\boxed{\ \ ウ\ \ } \lt p \lt \boxed{\ \ エ\ \ }$
である。
$p=\boxed{\ \ ウ\ \ }$のとき、曲線$y=f(x)$と直線$y=p$は2個の共有点をもつ。
それらのx座標を$q,r(q \lt r)$とする。曲線$y=f(x)$と直線$y=p$
が点(r,p)で接することに注意すると
$q=\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キ\ \ }}\ a^{\frac{1}{2}}, r=\sqrt{\boxed{\ \ ク\ \ }}\ a^{\frac{1}{2}}$
と表せる。

$\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$2\sqrt2a^{\frac{3}{2}}+16$ ①$-2\sqrt2a^{\frac{3}{2}}+16$
②$4\sqrt2a^{\frac{3}{2}}+16$ ③$-4\sqrt2a^{\frac{3}{2}}+16$
④$8\sqrt2a^{\frac{3}{2}}+16$ ⑤$-8\sqrt2a^{\frac{3}{2}}+16$

(3)方程式$f(x)=0$の異なる実数解の個数をnとする。次の⓪~⑤のうち、
正しいものは$\boxed{\ \ ケ\ \ }$と$\boxed{\ \ コ\ \ }$である。

$\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }$の解答群(解答の順序は問わない。)

$⓪n=1ならばa \lt 0 ①a \lt 0ならばn=1$
$②n=2ならばa \lt 0 ③a \lt 0ならばn=2$
$④n=2ならばa \gt 0 ⑤a \gt 0ならばn=3$

[2]$b \gt 0$とし、$g(x)=x^3-3bx+3b^2, h(x)=x^3-x^2+b^2$とおく。
座標平面上の曲線$y=g(x)$を$C_1$, 曲線$y=h(x)$を$C_2$とする。

$C_1$と$C_2$は2点で交わる。これらの交点のx座標をそれぞれ$\alpha,\beta$
$(\alpha \lt \beta)$とすると、$\alpha=\boxed{\ \ サ\ \ }, \beta=\boxed{\ \ シス\ \ }$である。
$\alpha \leqq x \leqq \beta$の範囲で$C_1$と$C_2$で囲まれた図形の面積をSとする。また、
$t \gt \beta$とし、$\beta \leqq x \leqq t$の範囲で$C_1$と$C_2$および直線$x=t$で囲まれた図形の
面積をTとする。
このとき
$S=\int_{\alpha}^{\beta}\boxed{\ \ セ\ \ }dx$
$T=\int_{\beta}^{t}\boxed{\ \ ソ\ \ }dx$
$S-T=\int_{\alpha}^{t}\boxed{\ \ タ\ \ }dx$
であるので
$S-T=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }}(2t^3-\ \boxed{\ \ ト\ \ }bt^2+\boxed{\ \ ナニ\ \ }b^2t-\ \boxed{\ \ ヌ\ \ }b^3)$
が得られる。
したがって、$S=T$となるのは$t=\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}\ b$のときである。

$\boxed{\ \ セ\ \ }~\boxed{\ \ タ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
$⓪\left\{g(x)+h(x)\right\} ①\left\{g(x)-h(x)\right\}$
$②\left\{h(x)-g(x)\right\} ③\left\{2g(x)+2h(x)\right\}$
$④\left\{2g(x)-2h(x)\right\} ⑤\left\{2h(x)-2g(x)\right\}$
$⑥2g(x) ⑦2h(x)$

2022共通テスト数学過去問
この動画を見る 

13岡山県教員採用試験(数学:5番 x軸回転体)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#面積、体積#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$
$2x^2-2xy+y^2=8-*$である.以下を解け.

(1)$y$の最大値を求めよ.
(2)$*$のグラフ$(y\geqq 0)$と$x$軸とで
囲まれた図形を$x$軸のまわりに1回転してできる
体積$V$を求めよ.
この動画を見る 

【数Ⅱ】【微分法と積分法】軌跡と面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1辺の長さが1の正方形OABCがある。点Pを正方形OABCの周および内部を動く点とし、点Pから辺OAに下した垂線をPHとする。点PがCP=PHを満たしながら動くとき、点Pの描く曲線と辺OA,AB,COで囲まれた部分の図形の面積を求めよ。
この動画を見る 
PAGE TOP