大学入試問題#755「基本問題」 北海道大学(1970) #微分方程式 - 質問解決D.B.(データベース)

大学入試問題#755「基本問題」 北海道大学(1970) #微分方程式

問題文全文(内容文):
$f(x)$は$x \gt 0$で定義された正の値をとる微分可能な関数で
$\{f(x)\}^2=x+1+\displaystyle \int_{1}^{x} \{f(t)\}^2dt$を満たすものとする。

(1)$y=f(x)$の満たす1階微分方程式を求めよ。
(2)$y=f(x)$を任意定数を含まない形で求めよ。

出典:1970年北海道大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$f(x)$は$x \gt 0$で定義された正の値をとる微分可能な関数で
$\{f(x)\}^2=x+1+\displaystyle \int_{1}^{x} \{f(t)\}^2dt$を満たすものとする。

(1)$y=f(x)$の満たす1階微分方程式を求めよ。
(2)$y=f(x)$を任意定数を含まない形で求めよ。

出典:1970年北海道大学 入試問題
投稿日:2024.03.05

<関連動画>

一橋大 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(z)=z^{2n}+z^n+1$を

$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり

を求めよ.$n$は自然数である.

一橋大学過去問
この動画を見る 

大学入試問題#258 東京理科大学(2011) #定積分 #面積

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$y-\tan\ x(0 \leqq x \lt \displaystyle \frac{\pi}{2})$
$y-\cos\ x(0 \leqq x \leqq \displaystyle \frac{\pi}{2})$
$x$軸で囲まれた部分の面積を求めよ。

出典:2011年東京理科大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第1問(1)〜互いに素な整数を選ぶ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)2,3,4,...,13の12個の整数の中から異なる2個を無作為に取り出したとき、それら2個の整数が互いに素となる確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題021〜一橋大学2016年度文系数学第4問〜絶対値の付いた3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とし、$f(x)=x^3-3ax$とする。区間$-1 \leqq x \leqq 1$における
$|f(x)|$の最大値をMとする。Mの最小値とそのときのaの値を求めよ。

2016一橋大学文系過去問
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第3問〜無限級数の和とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
正の整数nに対して、
$S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)$
とする。
(1)正の実数xに対して、次の不等式が成り立つことを示せ。
$\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}$

(2)極限値$\lim_{n \to \infty}S_n$を求めよ。

2022東北大学理系過去問
この動画を見る 
PAGE TOP