【高校数学】 数A-13 順列⑦ ・ グループ分け編 - 質問解決D.B.(データベース)

【高校数学】  数A-13  順列⑦ ・ グループ分け編

問題文全文(内容文):
①10人をA,Bの2部屋に入れる方法は何通り?
ただし、全部の人を1つの部屋に入れてもいい。

②10人を2つの組A,Bに分ける方法は何通り?

③10人を2つの組に分ける方法は何通り?
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①10人をA,Bの2部屋に入れる方法は何通り?
ただし、全部の人を1つの部屋に入れてもいい。

②10人を2つの組A,Bに分ける方法は何通り?

③10人を2つの組に分ける方法は何通り?
投稿日:2014.05.21

<関連動画>

福田の1.5倍速演習〜合格する重要問題057〜慶應義塾大学大学2019年度商学部第3問〜グループ分けの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 男子7人、女子5人の12人の中から3人を選んで第1グループを作る。次に、残った人の中から3人を選んで第2グループを作る。
(1)第1グループの男子の数が
0人である確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イウ\ \ }}$
1人である確率は$\displaystyle\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}$
2人である確率は$\displaystyle\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}$
3人である確率は$\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シス\ \ }}$
である。

(2)第1グループも第2グループも男子の数が1人である確率は$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。また、第2グループの男子の数が1人である確率は$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。

(3)第2グループの男子の数が1人であるとき、第1グループの男子の数も1人である確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナニ\ \ }}$である。

2019慶應義塾大学商学部過去問
この動画を見る 

【数A】場合の数:完全順列をプレゼント交換で説明

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
完全順列をプレゼント交換で説明してみた。
この動画を見る 

場合の数 茨城大

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x+y+2z=n$
$n$は5以上の奇数である.自然数$(x,y,z)$は何組あるか.

1983茨城大過去問
この動画を見る 

「ひっかけ方」 By にっし~Diaryさん

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
ポケモントレーナーA君は、伝説のポケモンMに遭遇し、ポケモンNを戦闘に出した。
A君は持ち物として、モンスターボール、スーパーボール、ハイパーボールをそれぞれ
十分に持っている。

1ターンにとれる行動は、「ポケモンNで伝説のポケモンMを攻撃する」か「3種類のい
ずれかのボールを1個投げる」だけである。
また、連続する2ターンのうち少なくとも1ターンは必ずハイパーボールを投げる。

10ターン目に伝説のポケモンを捕まえたとするとき、A君が10ターンで取った行動の組
み合わせとして考えられるのは全部で何通りか。
ただし、伝説のポケモンMは何回攻撃しても倒れることはないとする。
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第1問〜ソーシャルディスタンスを保つ座り方の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)ある公園に、図のように(※動画参照)10個の丸い椅子が、
東側に5個横一列に、西側に5個一列に、それぞれ1m間隔で置かれている。また東側の
椅子と西側の椅子は2つずつ背中合わせに置かれていて、その間隔は1mとなっている。
Aさんはいつも東側の椅子のいずれかに、Bさんは西側の椅子のいずれかに、
同じ確率で座る。このとき、AさんとBさんの座る日値がソーシャルディスタンスの
2m以上である確率は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。
なお、AさんもBさんも椅子の中心に座り、ソーシャルディスタンスは座っている
椅子の中心間の距離で測るものとする。
この動画を見る 
PAGE TOP