問題文全文(内容文):
数列$\{a_n\}$を次のように定める。$(n=2,3,・・・)$
$a_1=2$
$a_n=\displaystyle \frac{1}{n}+(1-\displaystyle \frac{1}{n})a_{n-1}$
(1)一般項$a_n$を求めよ
(2)$\displaystyle \sum_{k=1}^n k^2a_k$を求めよ
出典:2003年千葉大学 入試問題
数列$\{a_n\}$を次のように定める。$(n=2,3,・・・)$
$a_1=2$
$a_n=\displaystyle \frac{1}{n}+(1-\displaystyle \frac{1}{n})a_{n-1}$
(1)一般項$a_n$を求めよ
(2)$\displaystyle \sum_{k=1}^n k^2a_k$を求めよ
出典:2003年千葉大学 入試問題
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
数列$\{a_n\}$を次のように定める。$(n=2,3,・・・)$
$a_1=2$
$a_n=\displaystyle \frac{1}{n}+(1-\displaystyle \frac{1}{n})a_{n-1}$
(1)一般項$a_n$を求めよ
(2)$\displaystyle \sum_{k=1}^n k^2a_k$を求めよ
出典:2003年千葉大学 入試問題
数列$\{a_n\}$を次のように定める。$(n=2,3,・・・)$
$a_1=2$
$a_n=\displaystyle \frac{1}{n}+(1-\displaystyle \frac{1}{n})a_{n-1}$
(1)一般項$a_n$を求めよ
(2)$\displaystyle \sum_{k=1}^n k^2a_k$を求めよ
出典:2003年千葉大学 入試問題
投稿日:2024.03.15