問題文全文(内容文):
$\displaystyle \frac{3}{2} \leq \displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{2^2}+・・・+\displaystyle \frac{1}{n^2}) \leq 2$を示せ。
出典:2013年日本医科大学 入試問題
$\displaystyle \frac{3}{2} \leq \displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{2^2}+・・・+\displaystyle \frac{1}{n^2}) \leq 2$を示せ。
出典:2013年日本医科大学 入試問題
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{3}{2} \leq \displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{2^2}+・・・+\displaystyle \frac{1}{n^2}) \leq 2$を示せ。
出典:2013年日本医科大学 入試問題
$\displaystyle \frac{3}{2} \leq \displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{2^2}+・・・+\displaystyle \frac{1}{n^2}) \leq 2$を示せ。
出典:2013年日本医科大学 入試問題
投稿日:2024.03.19