問題文全文(内容文):
$a_0=b_0=1$
$a_{n+1}=\displaystyle \frac{a_n}{a_n^2+b_n^2}$
$b_{n+1}=2-\displaystyle \frac{b_n}{a_n^2+b_n^2}$
一般項$a_n,b_n$を求めよ。
$a_0=b_0=1$
$a_{n+1}=\displaystyle \frac{a_n}{a_n^2+b_n^2}$
$b_{n+1}=2-\displaystyle \frac{b_n}{a_n^2+b_n^2}$
一般項$a_n,b_n$を求めよ。
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$a_0=b_0=1$
$a_{n+1}=\displaystyle \frac{a_n}{a_n^2+b_n^2}$
$b_{n+1}=2-\displaystyle \frac{b_n}{a_n^2+b_n^2}$
一般項$a_n,b_n$を求めよ。
$a_0=b_0=1$
$a_{n+1}=\displaystyle \frac{a_n}{a_n^2+b_n^2}$
$b_{n+1}=2-\displaystyle \frac{b_n}{a_n^2+b_n^2}$
一般項$a_n,b_n$を求めよ。
投稿日:2024.02.21