問題文全文(内容文):
$a_1=\sqrt{ 3 }$
$a_{n+1}=\displaystyle \frac{-1+\sqrt{ 1+a_n^2 }}{a_n}$を満たす一般項$a_n$を求めよ。
$a_1=\sqrt{ 3 }$
$a_{n+1}=\displaystyle \frac{-1+\sqrt{ 1+a_n^2 }}{a_n}$を満たす一般項$a_n$を求めよ。
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$a_1=\sqrt{ 3 }$
$a_{n+1}=\displaystyle \frac{-1+\sqrt{ 1+a_n^2 }}{a_n}$を満たす一般項$a_n$を求めよ。
$a_1=\sqrt{ 3 }$
$a_{n+1}=\displaystyle \frac{-1+\sqrt{ 1+a_n^2 }}{a_n}$を満たす一般項$a_n$を求めよ。
投稿日:2024.01.26