大学入試問題#664「三角関数or複素平面」 藤田医科大学(2023) 2024年入学 - 質問解決D.B.(データベース)

大学入試問題#664「三角関数or複素平面」 藤田医科大学(2023) 2024年入学

問題文全文(内容文):
$\displaystyle \sum_{k=1}^4 \cos\displaystyle \frac{2k}{9}\pi$の値を求めよ

出典:2023年藤田医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^4 \cos\displaystyle \frac{2k}{9}\pi$の値を求めよ

出典:2023年藤田医科大学 入試問題
投稿日:2023.11.30

<関連動画>

大学入試問題#531「作成時間がありませんでした。」 横浜市立大学(2022) #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$のとき
$\alpha^{18}+\alpha^6+\alpha^4+\alpha^2$の値を求めよ

出典:2023年横浜市立大学 入試問題
この動画を見る 

福田の数学〜京都大学2022年文系第3問〜放物線と直交する2接線で囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の2直線$L_1,L_2$は直交し、交点のx座標は$\frac{3}{2}$である。
また、$L_1,L_2$は共に曲線$C:y=\frac{x^2}{4}$に接している。このとき、$L_1,L_2$およびCで
囲まれる図形の面積を求めよ。

2022京都大学文系過去問
この動画を見る 

大学入試問題#831「教科書の章末問題」 #山形大学(2010) #三角関数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学
指導講師: ますただ
問題文全文(内容文):
$\sin\displaystyle \frac{19}{12}\pi$の値を求めよ

出典:2010年山形大学
この動画を見る 

福田の数学〜神戸大学2023年理系第4問〜平面に下ろした垂線ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 四面体OABCがあり、辺OA, OB, OCの長さはそれぞれ$\sqrt{13}$, 5, 5である。
$\overrightarrow{OA}$・$\overrightarrow{OB}$=$\overrightarrow{OA}$・$\overrightarrow{OC}$=1, $\overrightarrow{OB}$・$\overrightarrow{OC}$=-11 とする。頂点Oから$\triangle$ABCを含む平面に下ろした垂線とその平面の交点をHとする。以下の問いに答えよ。
(1)線分ABの長さを求めよ。
(2)実数$s$, $t$を$\overrightarrow{OH}$=$\overrightarrow{OA}$+$s\overrightarrow{AB}$+$t\overrightarrow{AC}$ を満たすように定めるとき、$s$と$t$の値を求めよ。
(3)四面体OABCの体積を求めよ。

2023神戸大学理系過去問
この動画を見る 

一橋大 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(z)=z^{2n}+z^n+1$を

$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり

を求めよ.$n$は自然数である.

一橋大学過去問
この動画を見る 
PAGE TOP