問題文全文(内容文):
3⃣$f(x)=x \sqrt{4-x^2} \quad (0 \leqq x \leqq 2)$とy=xで囲まれた領域Sの回転体の体積Vを求めよ。
(1)y=f(x)の最大値
(2)y=xと$y=x \sqrt{4-x^2}$ $(0 \leqq x \leqq 2)$で囲まれたSの値を求めよ。
(3)Sの回転体の体積V
3⃣$f(x)=x \sqrt{4-x^2} \quad (0 \leqq x \leqq 2)$とy=xで囲まれた領域Sの回転体の体積Vを求めよ。
(1)y=f(x)の最大値
(2)y=xと$y=x \sqrt{4-x^2}$ $(0 \leqq x \leqq 2)$で囲まれたSの値を求めよ。
(3)Sの回転体の体積V
単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
3⃣$f(x)=x \sqrt{4-x^2} \quad (0 \leqq x \leqq 2)$とy=xで囲まれた領域Sの回転体の体積Vを求めよ。
(1)y=f(x)の最大値
(2)y=xと$y=x \sqrt{4-x^2}$ $(0 \leqq x \leqq 2)$で囲まれたSの値を求めよ。
(3)Sの回転体の体積V
3⃣$f(x)=x \sqrt{4-x^2} \quad (0 \leqq x \leqq 2)$とy=xで囲まれた領域Sの回転体の体積Vを求めよ。
(1)y=f(x)の最大値
(2)y=xと$y=x \sqrt{4-x^2}$ $(0 \leqq x \leqq 2)$で囲まれたSの値を求めよ。
(3)Sの回転体の体積V
投稿日:2020.07.14