大学入試問題#597「難しくはないと思う」 大阪教育大学(2014) #命題② - 質問解決D.B.(データベース)

大学入試問題#597「難しくはないと思う」 大阪教育大学(2014) #命題②

問題文全文(内容文):
$\alpha=\sqrt[ 3 ]{ 2 }$(が無理数は使用可)
$\alpha^2+p\alpha+q=0$を満たす有理数$p,q$が存在しなことを示せ

出典:2015年大阪教育大学 入試問題
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\sqrt[ 3 ]{ 2 }$(が無理数は使用可)
$\alpha^2+p\alpha+q=0$を満たす有理数$p,q$が存在しなことを示せ

出典:2015年大阪教育大学 入試問題
投稿日:2023.07.25

<関連動画>

素数問題

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数$(p,q)$の組をすべて求めよ.
$-p^3+4p^2+7p-1=q^2$
この動画を見る 

【数学Ⅰ/三角比】正弦定理を使って辺の比を求める問題

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、$\displaystyle \frac{\sin A}{4}=\displaystyle \frac{\sin B}{5}=\displaystyle \frac{\sin C}{2}$が成立しているとき、次の問いに答えよ。
(1)3辺の比$a:b:c$を求めよ。
(2)$\cos B$の値を求めよ。
この動画を見る 

【高校数学】2次不等式はこれでマスター!この手順通りに考えれば解けちゃう【数学のコツ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次不等式はこれでマスター!この手順通りに考えれば解けちゃう
この動画を見る 

質問への返答 因数分解 a^3+b^3+c^3-3abc

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^3+b^3+c^3-3abc$
この動画を見る 

2023高校入試数学解説57問目 群馬県前期ラストの問題

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
BC=CA
(1)$\angle AQC = ?$
(2)$△ABP∽△CQP$を示せ
(3)CQ=?
*図は動画内参照

2023群馬県 最後の問題
この動画を見る 
PAGE TOP