福田の数学〜九州大学2024年理系第2問〜複素数平面と高次方程式の解 - 質問解決D.B.(データベース)

福田の数学〜九州大学2024年理系第2問〜複素数平面と高次方程式の解

問題文全文(内容文):
$\Large\boxed{2}$ 整式$f(z)$=$z^6$+$z^4$+$z^2$+1
について、以下の問いに答えよ。
(1)$f(z)$=0 を満たす全ての複素数$z$に対して、|$z$|=1 が成り立つことを示せ。
(2)次の条件を満たす複素数$w$を全て求めよ。
条件:$f(z)$=0 を満たす全ての複素数$z$に対して
$f(wz)$=0 が成り立つ。
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 整式$f(z)$=$z^6$+$z^4$+$z^2$+1
について、以下の問いに答えよ。
(1)$f(z)$=0 を満たす全ての複素数$z$に対して、|$z$|=1 が成り立つことを示せ。
(2)次の条件を満たす複素数$w$を全て求めよ。
条件:$f(z)$=0 を満たす全ての複素数$z$に対して
$f(wz)$=0 が成り立つ。
投稿日:2024.06.15

<関連動画>

【高校数学】数Ⅲ-5 複素数の極形式①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の複素数を極形式で表そう.
ただし,偏角$\theta$は$0\leqq \theta \lt 2\pi$とする.

④$1+i$
⑤$-2$
この動画を見る 

練習問題11 20佐賀県教員採用試験(数学:複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$Z_1=4,Z_n=\dfrac{1}{4}(1+\sqrt3 i)Z_{n-1}$
点$Z_n(Z_n)$において
$\displaystyle \lim_{n\to\infty} \displaystyle \sum_{k=1}^{n} \triangle OZ_n Z_{n-1}$を求めよ.
この動画を見る 

複素数の計算 群馬大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\dfrac{\sqrt3-1}{2}+\dfrac{\sqrt3+1}{2}i$である.$z^{12}$の値を求めよ

(1)$\dfrac{z}{1+i}$を$a+bi$の形で表せ.
(2)$z$を極形式で表せ.

群馬大過去問
この動画を見る 

【高校数学】 数Ⅱ-27 複素数⑤

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$α=\displaystyle \frac{3+i}{2+i}+\displaystyle \frac{x-i}{2-i}$がつぎのようになるとき、実数xの値を求めよう。

①$α$が実数

②$α$が純虚数

◎$x=-2+3i,y=-2-3i$のとき、次の式を求めよう。

③$x^2+y^2$

④$x^3+y^3$

⑤$\displaystyle \frac{y}{x}+\displaystyle \frac{x}{y}$
この動画を見る 

#32 数検1級1次 過去問 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数平面#複素数#複素数平面#数学検定#数学検定1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$z:$複素数
方程式$z^2-z+i\bar{ z }=i$を解け。
この動画を見る 
PAGE TOP