大学入試問題#522「これ初見はきつそう」 信州大学2001 #面積 - 質問解決D.B.(データベース)

大学入試問題#522「これ初見はきつそう」 信州大学2001 #面積

問題文全文(内容文):
0θ2π

曲線
x=cos3θ, y=sin3θで囲まれた面積を求めよ

出典:2001年信州大学後期 入試問題
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#信州大学#数C
指導講師: ますただ
問題文全文(内容文):
0θ2π

曲線
x=cos3θ, y=sin3θで囲まれた面積を求めよ

出典:2001年信州大学後期 入試問題
投稿日:2023.05.01

<関連動画>

福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角αだけ
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'をx,y,s,t,α
の式で表すとx=    , y=    となる。
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径a2で原点O
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。
そして、接点の座標がはじめて(acosβ,asinβ)(0β2π)となるようにする。
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。
(i)点B(a2,0)を中心として、円Kを    に角    だけ回転させる。
(ii)原点Oを中心として、円Kを    に角    だけ回転させる。

    ,    ,    ,    の選択肢
時計回り,反時計回り,β,2β,12β

(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)
(ただし、0<b<a)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた
やり方でCに沿って転がすとき、点Qが動いてできる曲線をS1とする。S1上の
点の座標を(x,y)として、S1の方程式をx,yを用いて書くと    となる。

(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。
2つの円の接点が円Kを    回転したとき、点Rははじめてもとの位置
(0,a)に戻る。Rが描く曲線をS2とする。原点Oを極とし、x軸の正の部分を
始線とする極座標#(r,θ)によるS2の極方程式はr=    である。
ただしr,θはそれぞれS2上の点の原点からの距離、および偏角である。

2022慶應義塾大学医学部過去問
この動画を見る 

群馬大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上の曲線#複素数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
z=312+3+12i

(1)
z1+ia+biの形で表せ

(2)
zを極形式で表せ

(3)
z12を求めよ

出典:2004年国立大学法人群馬大学 過去問
この動画を見る 

福田の数学〜九州大学2022年理系第5問の背景を考える〜内サイクロイド曲線(ハイポサイクロイド、アステロイド)の媒介変数表示

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上の曲線#ベクトルと平面図形、ベクトル方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の曲線Cを、媒介変数tを用いて次のように定める。
x=5cost+cos5t, y=5sintsin5t (πt<π)
以下の問いに答えよ。
(1)区間0<t<π6において、dxdt<0, dydx<0であることを示せ。
(2)曲線Cの0tπ6の部分、x軸、直線y=13xで囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りにπ3だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。

2022九州大学理系過去問
この動画を見る 

放物線と直線  2024早大本庄  オンラインで教えている生徒が早稲田本庄に合格しました!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
点(1,9)を通り、y軸と平行でなく放物線y=x2とのすべての交点のx座標とy座標がともに整数となる直線は何本あるか?
2024早稲田大学 本庄高等学院
この動画を見る 

【数Ⅲ】式と曲線:tractrixに関する問題

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
tractrixと呼ばれる媒介変数で表される曲線が持つ性質に関する証明です。あまり有名ではないものの、高校数学で十分証明が可能なものになります。入試にも出題される可能性が高いかと思われますので、ぜひご覧ください。
この動画を見る 
PAGE TOP preload imagepreload image