大学入試問題#555「不定積分だと難易度があがりがち」 東京帝国大学(1928) #不定積分 - 質問解決D.B.(データベース)

大学入試問題#555「不定積分だと難易度があがりがち」 東京帝国大学(1928) #不定積分

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x(x^2+1)^2}$

出典:1928年東京帝国大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x(x^2+1)^2}$

出典:1928年東京帝国大学 入試問題
投稿日:2023.06.04

<関連動画>

#上智大学(2016) #ウォリス積分 #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#上智大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\sin^3x+\cos^3x) dx$

出典:2016年上智大学
この動画を見る 

11神奈川県教員採用試験(数学:11番 重積分)

アイキャッチ画像
単元: #積分とその応用#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{11}$ $D=\{ (x,y) |x \geqq 0 , y \geqq 0, x+y \leqq 1 \}$
$∬_Dx^2+y^2 dx dy$を求めよ。
この動画を見る 

13愛知県教員採用試験(数学:5番 微積)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣ $F(x)=\int_{\pi - x}^{\pi + x} t sint dt$
$(0 \leqq x \leqq 2\pi)$
F(x)の最小値を求めよ。
この動画を見る 

福田の数学〜名古屋大学2023年理系第2問〜回転体の体積と関数の増減と最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#面積、体積#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<b<a とする。xy平面において、原点を中心とする半径rの円Cと点(a, 0)を中心とする半径bの円Dが2点で交わっている。
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
$\displaystyle\lim_{a \to \infty}(r(a)-a)$を求めよ。

2023名古屋大学理系過去問
この動画を見る 

大学入試問題#403「教科書の例題にありそう」 東京電機大学2009 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x|3x-2| dx$

出典:2009年東京電機大学 入試問題
この動画を見る 
PAGE TOP