10奈良県教員採用試験(数学:6番 微分・微分方程式) - 質問解決D.B.(データベース)

10奈良県教員採用試験(数学:6番 微分・微分方程式)

問題文全文(内容文):
6⃣$f(x+y)=f(x)f(y),f'(0)a≠0$
(1)f(0)を求めよ。
(2)y=f(x)は微分可能を」示し、関数f(x)を求めよ。
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
6⃣$f(x+y)=f(x)f(y),f'(0)a≠0$
(1)f(0)を求めよ。
(2)y=f(x)は微分可能を」示し、関数f(x)を求めよ。
投稿日:2020.09.02

<関連動画>

東京商船大 微分公式の証明

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京商船大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2-1)^n(n$自然数$)$

(1)
$f'(x)=2nx(x^2-1)^{n-1}$を証明せよ

(2)
$f(x)$の極値を求めよ

出典:東京海洋大学 過去問
この動画を見る 

【数Ⅲ】【微分とその応用】平均値の定理の利用1 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数について、f'(x)=0を満たすxは存在するか。
(1) f(x)=xcosx (0≦x≦π/2)
(2) f(x)=1-|x-2| (1≦x≦3)
この動画を見る 

山口大 3次方程式の解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
05年 山口大学

次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
この動画を見る 

福田の数学〜早稲田大学2023年商学部第1問(3)〜条件を満たす最小次数の関数を求める

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(3)$n$を正の整数とする。次の条件(i),(ii),(iii)を満たす$n$次関数$f(x)$のうち$n$が最小のものは、$f(x)$=$\boxed{\ \ ウ\ \ }$である。
(i) $f(1)$=2
(ii) $\displaystyle\int_{-1}^1(x+1)f(x)dx$=0
(iii) すべての正の整数$m$に対して、$\displaystyle\int_{-1}^1|x|^mf(x)dx$=0
この動画を見る 

2023年京大の数学!最大値・最小値【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の関数$f(x)$の最大値と最小値を求めよ。

$f(x)=e^{-x^{2}}+\dfrac{1}{4}x^{2}+1+\dfrac{1}{e^{-x^{2}}+\dfrac{1}{4}x^{2}+1}$ $(-1≦x≦1)$

ただし、$e$は自然対数の底であり、その値は$e=2.71・・・$である。

2023京都大過去問
この動画を見る 
PAGE TOP