大学入試問題#466「絶対に知っておくべき解き方」 電気通信大学(2014) #極限 - 質問解決D.B.(データベース)

大学入試問題#466「絶対に知っておくべき解き方」 電気通信大学(2014) #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$

出典:2014年電気通信大学 入試問題
単元: #大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$

出典:2014年電気通信大学 入試問題
投稿日:2023.03.02

<関連動画>

福田のおもしろ数学112〜多変数の式の最大最小

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
実数$x$,$y$,$z$が0≦$x$≦1, 0≦$y$≦1, 2≦$z$≦3 を満たして変わるとき、$\displaystyle\frac{z-y}{z-x}$ の最大値、最小値を求めよ。
この動画を見る 

【高校数学】数Ⅲ-74 数列の極限⑩(無限等比級数)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の無限級数が収束するような実数$x$の値の範囲と、
収束するときの和を求めよ。

①$1+\dfrac{x}{3}+\dfrac{x^2}{9}+\dfrac{x^3}{27}+・・・$

②$(x-4)+\dfrac{x(x-4)}{2x-4}+\dfrac{x^2(x-4)}{(2x-4)^2}+・・・ \quad (x \neq 2)$
この動画を見る 

大学入試問題#433「初手が大事」 #一橋大学(2020) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } (\cos^2\sqrt{ x+1 }+\sin^2\sqrt{ x })$

出典:2020年一橋大学(後期) 入試問題
この動画を見る 

福田のおもしろ数学441〜ガウス記号を使って定義された数列の極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$a_n=\dfrac{1}{n^2} \displaystyle \sum_{k=1}^n [\sqrt{2n^2-k^2}]$とするとき、

$\displaystyle \lim_{n\to\infty} a_n$を求めて下さい。

$[x]$は$x$を超えない最大の整数とする。
   
この動画を見る 

数学「大学入試良問集」【17−8 不等式とハサミウチの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
$h \gt 0$として、不等式$(1+h)^n \geqq 1+nh+\displaystyle \frac{n(n-1)}{2}h^2$がすべての自然数$n$について成り立つことを数学的帰納法を用いて説明せよ。

(2)
(1)の不等式を使って、$0 \lt x \lt 1$のとき、数列$\{nx^n\}$が$0$に収束することを示せ。

(3)
$0 \lt x \lt 1$のとき
無限級数$2x+4x^2+6x^3+・・・+2nx^n+・・・$の和を求めよ。
この動画を見る 
PAGE TOP