大学入試問題#466「絶対に知っておくべき解き方」 電気通信大学(2014) #極限 - 質問解決D.B.(データベース)

大学入試問題#466「絶対に知っておくべき解き方」 電気通信大学(2014) #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$

出典:2014年電気通信大学 入試問題
単元: #大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$

出典:2014年電気通信大学 入試問題
投稿日:2023.03.02

<関連動画>

福田の数学〜立教大学2024年理学部第1問(3)〜対数関数の極値と級数の和

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$$nは自然数とする。
f_{ n }(x)=x^{ \frac{ 1 }{ n }}\log x (x \gt0)がx=a_{ n }で極小値をとるとき、$$
$$a_{ n }=\boxed{ エ }である。このとき、\displaystyle \sum_{i=1}^n a_n=\boxed{ オ }である。$$
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第5問〜対数関数の極限と変曲点とグラフの接線

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}\ a \gt 0$を定数とし、
$f(x)=x^a\log x$とする。以下の問いに答えよ。
(1)$\lim_{x \to +0}f(x)$を求めよ。必要ならば$\lim_{s \to \infty}se^{-s}=0$が成り立つことは
証明なしに用いてよい。
(2)曲線$y=f(x)$の変曲点がx軸上に存在するときのaの値を求めよ。
さらにそのとき$y=f(x)$のグラフの概形を描け。
(3)$t \gt 0$に対して、曲線$y=f(x)$上の点(t,f(t))における接線をlとする。
lがy軸の負の部分と交わるための$(a,t)$の条件を求め、その条件の表す領域を
a-t平面上に図示せよ。

2022早稲田大学人間科学部過去問
この動画を見る 

【高校数学】数Ⅲ-79 関数の極限④

アイキャッチ画像
単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to \infty}(3x^2-5x+2)$

②$\displaystyle \lim_{x\to \infty}\dfrac{5x+4}{x^2+3x-1}$

③$\displaystyle \lim_{x\to \infty}\dfrac{2x^2-1}{3x^2-4x+2}$

④$\displaystyle \lim_{x\to \infty}\dfrac{x^2+3x}{x-2}$

⑤$\displaystyle \lim_{x\to \infty}(\sqrt{x^2+3x-1}+x)$
この動画を見る 

早稲田大 みんな大好きBBB

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{i=6}^{\infty} \dfrac{1800}{(n-5)(n-4)(n-1)n}$
これを求めよ。

早稲田大過去問
この動画を見る 

【数Ⅲ】極限:極限の定形不定形をマスターしよう!

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
極限の考え方の基本です。変形が必要な場合と必要でない場合の違いをチェックしましょう!
この動画を見る 
PAGE TOP