大学入試問題#468「パズルで遊ぶ感じ」 岩手大学(2022) 微積の応用 - 質問解決D.B.(データベース)

大学入試問題#468「パズルで遊ぶ感じ」 岩手大学(2022) 微積の応用

問題文全文(内容文):
$f(x)$:微分可能
$g(x)=f(x)e^{-x}$
(1)
$f'(x)=f(x)+g'(x)e^x$を示せ

(2)
$a$:定数
$f(x)=\displaystyle \int_{a}^{x} (f(t)-4te^{-t}) dt$
$f(0)=1$のとき$f(x),a$を求めよ

出典:2022年岩手大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$:微分可能
$g(x)=f(x)e^{-x}$
(1)
$f'(x)=f(x)+g'(x)e^x$を示せ

(2)
$a$:定数
$f(x)=\displaystyle \int_{a}^{x} (f(t)-4te^{-t}) dt$
$f(0)=1$のとき$f(x),a$を求めよ

出典:2022年岩手大学 入試問題
投稿日:2023.03.04

<関連動画>

【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分3 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1) $\displaystyle \int \frac{\sqrt x}{\sqrt[4]{x^3}+1}~dx$
(2) $\displaystyle \int \frac{dx}{x\sqrt{x+1}}$
(3) $\displaystyle \int \log|x^2-1|~dx$
(4) $\displaystyle \int \frac{e^x}{e^x-e^{-x}}~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int \tan^4x~dx$
(2) $\displaystyle \int \frac{dx}{\sin{2x}}$
(3) $\displaystyle \int \frac{1}{1-\sin x}~dx$
(4) $\displaystyle \int (\sin^3x-\cos^3x)~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int e^x\cos x~dx$
(2) $\displaystyle \int e^{-x}\sin x~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int \sin x\log(\cos x)~dx$
(2) $\displaystyle \int x\tan^2x~dx$
(3) $\displaystyle \int \frac{1}{1-e^x}~dx$
この動画を見る 

#30 数検1級1次 過去問 複雑な定積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
定積分
$\displaystyle \int_{-1}^{1}\displaystyle \frac{x^4+2x^3+4x^2+6x+2}{x^3+2x^2+2x+4}\ dx$を計算せよ。
この動画を見る 

複素関数論⑯ コーシーの積分定理の応用 *8(1)(2)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$ \displaystyle \int_{c}^{} \dfrac{1}{z-2i}\ dz$

(1)$c:$原点を中心とする単位円を求めよ.
(2)$c:-1,1,3i$でつくられる三角形の周を求めよ.
この動画を見る 

大学入試問題#85 小樽商科大学(1988) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#小樽商科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \sin(log\ x)dx$を計算せよ。

出典:1988年小樽商科大学 入試問題
この動画を見る 

練習問題51 広島大学 改 不定積分

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\ 2(x-1)e^{-x}\cos\ x\ dx$
$\displaystyle \int\ e^{-x}\cos\ x\ dx=\displaystyle \frac{e^{-x}}{2}(\sin\ x-\cos\ x)+c$
$\displaystyle \int\ e^{-x}\sin\ x\ dx=-\displaystyle \frac{e^{-x}}{2}(\sin\ x+\cos\ x)+c$

$c$は積分定数

出典:広島大学
この動画を見る 
PAGE TOP