問題文全文(内容文):
$0 \lt x \lt 1$のとき
$(\displaystyle \frac{x+1}{2})^{x+1} \lt x^x$を示せ
出典:2014年横浜国立大学 入試問題
$0 \lt x \lt 1$のとき
$(\displaystyle \frac{x+1}{2})^{x+1} \lt x^x$を示せ
出典:2014年横浜国立大学 入試問題
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$0 \lt x \lt 1$のとき
$(\displaystyle \frac{x+1}{2})^{x+1} \lt x^x$を示せ
出典:2014年横浜国立大学 入試問題
$0 \lt x \lt 1$のとき
$(\displaystyle \frac{x+1}{2})^{x+1} \lt x^x$を示せ
出典:2014年横浜国立大学 入試問題
投稿日:2023.01.24