ハルハルさんの積分問題(1) 「大技の連打」 #定積分 - 質問解決D.B.(データベース)

ハルハルさんの積分問題(1) 「大技の連打」 #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x}{\sin\ x+\cos\ x+0.2} dx$
チャプター:

00:00 問題紹介
00:11 本編スタート
07:52 作成した解答①
08:01 作成した解答②
08:11 エンディング(楽曲提供:兄いえてぃさん)

単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x}{\sin\ x+\cos\ x+0.2} dx$
投稿日:2022.12.23

<関連動画>

大学入試問題#504「ひたすら積分」 #京都工芸繊維大学 (2012) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \frac{\displaystyle \int_{1}^{e} log(ax) dx}{\displaystyle \int_{1}^{e} x\ dx}=\displaystyle \int_{1}^{e}\displaystyle \frac{ log(ax)}{x} dx$を満たすとき
$log\ a$の値を求めよ。

出典:2012年京都工芸繊維大学 入試問題
この動画を見る 

大学入試問題#783「おもろいタイプ」 岡山県立大学中期(2011) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{\sqrt{ 1-t^2 }}\ dt(0 \leq x \leq 1)$において
$\displaystyle \int_{0}^{\frac{1}{2}} f(x)\ dx$を求めよ

出典:2011年青山県立大学中期 入試問題
この動画を見る 

大学入試問題#202 横浜国立大学 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\displaystyle \frac{\cos\ x}{\sin\ x})^4dx$

出典:横浜国立大学 入試問題
この動画を見る 

大学入試問題#367「これは、たぶん一撃で倒せる」 横浜国立大学2012 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\displaystyle \frac{2+\sin\ x}{1+\cos\ x}dx$

出典:2012年横浜国立大学 入試問題
この動画を見る 

大学入試問題#221 横浜国立大学(2015) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ \frac{\pi}{2} }}x^3\cos(x^2)dx$を計算せよ

出典:2015年横浜国立大学 入試問題
この動画を見る 
PAGE TOP