【数Ⅲ-126】微分の不等式への応用② - 質問解決D.B.(データベース)

【数Ⅲ-126】微分の不等式への応用②

問題文全文(内容文):
数Ⅲ(微分の不等式への応用➁)

$x\gt0$のとき、不等式$\sqrt{1+x}\gt1+\frac{1}{2}x-\frac{1}{8}x^2$を証明せよ
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の不等式への応用➁)

$x\gt0$のとき、不等式$\sqrt{1+x}\gt1+\frac{1}{2}x-\frac{1}{8}x^2$を証明せよ
投稿日:2019.04.04

<関連動画>

【数Ⅲ】【微分とその応用】色々な関数の微分1 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)

次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)

次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
この動画を見る 

福田のおもしろ数学151〜面積を2等分する直線が存在する証明

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
左の図形(※動画参照)の面積を2等分する直線が存在することを証明してください。
この動画を見る 

【数Ⅲ】微分法: 微分係数の利用! f'(a)が存在するとき、次の極限をf(a),f'(a)で表せ。(1)lim(h→0){f(a+4h)-f(a+2h)}/h

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f'(a)$が存在するとき、次の極限を$f(a),f'(a)$で表せ。
(1)$\displaystyle \lim_{h\to 0}\dfrac{f(a+4h)-f(a+2h)}{h}$

この動画を見る 

福田の数学〜立教大学2022年理学部第1問(1)〜対数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(1)$実数$x$に関する方程式
$2\log(1-x)-\log(5-x)=\log 2$
を解くと$x=\boxed{ア}$である.

立教大学2022年理学部過去問
この動画を見る 

微分方程式⑧-3【非同次2階微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
非同次2階微分方程式を解説していきます.
この動画を見る 
PAGE TOP