福田の数学〜早稲田大学2024年理工学部第4問〜確率漸化式 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2024年理工学部第4問〜確率漸化式

問題文全文(内容文):
$\Large\boxed{4}$ 2つのチーム$W$, $K$が$n$回試合を行う。ただし$n$≧2とする。各試合での$W$, $K$それぞれの勝つ確率は$\displaystyle\frac{1}{2}$とし、引き分けはないものとする。$W$が連敗しない確率を$p_n$とする。ただし、連敗とは2回以上続けて負けることを言う。
(1)$p_3$を求めよ。
(2)$p_{n+2}$を$p_{n+1}$と$p_n$を用いて表せ。
(3)以下の2式を満たす$\alpha$, $\beta$を求めよ。ただし、$\alpha$<$\beta$とする。
$p_{n+2}$-$\beta p_{n+1}$=$\alpha (p_{n+1}-\beta p_n)$
$p_{n+2}$-$\alpha p_{n+1}$=$\beta (p_{n+1}-\alpha p_n)$
(4)$p_n$ を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 2つのチーム$W$, $K$が$n$回試合を行う。ただし$n$≧2とする。各試合での$W$, $K$それぞれの勝つ確率は$\displaystyle\frac{1}{2}$とし、引き分けはないものとする。$W$が連敗しない確率を$p_n$とする。ただし、連敗とは2回以上続けて負けることを言う。
(1)$p_3$を求めよ。
(2)$p_{n+2}$を$p_{n+1}$と$p_n$を用いて表せ。
(3)以下の2式を満たす$\alpha$, $\beta$を求めよ。ただし、$\alpha$<$\beta$とする。
$p_{n+2}$-$\beta p_{n+1}$=$\alpha (p_{n+1}-\beta p_n)$
$p_{n+2}$-$\alpha p_{n+1}$=$\beta (p_{n+1}-\alpha p_n)$
(4)$p_n$ を求めよ。
投稿日:2024.05.12

<関連動画>

階乗の方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{(x^2-1)!}{x^2-1} = 23!$のとき
x=?
この動画を見る 

cos1°は有理数か【数学 入試問題】【チェビシェフ多項式】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。

(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。

(3)$cos1°$が無理数であることを証明せよ。

数学入試問題過去問
この動画を見る 

【数B】【数列】数列{an}の一般項を求めよ。(1)a1=1, a2=2, an+2+3an+1-4an=0(2)a1=0, a2=1, an+2+5an+1+6an=0他1問

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列$a_n$の一般項を求めよ。
$a_1 = 1$,$a_2 = 2$
$a_{n+2} + 3a_{n+1} - 4a_n = 0$

$a_1 = 0$,$a_2 = 1$
$a_{n+2} + 5a_{n+1} + 6a_n = 0$

$a_1 = 1$, $a_2 = 4$
$a_{n+2} - 6a_{n+1} + 9a_n = 0$
この動画を見る 

【数B】数学的帰納法が意味不明な人へ【新しいイメージで考える】

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数B】数学的帰納法解説動画です
-----------------
$1^2+3^2+5^2+…+(2n-1)^2=$
$\displaystyle \frac{1}{2}n(2n-1)(2n+1)$を証明せよ
この動画を見る 

【数B】【数列】数学的帰納法2 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
数学的帰納法によって次の不等式を証明せよ。
(1) $n$が自然数のとき$1^2+2^2+3^2+\cdots+n^2< \dfrac{(n+1)^3}3$
(2) $n$が4以上の自然数のとき$2^n>3n+1$
(3) $n$が3以上の自然数、$h>0$のとき$(1+h)^n> 1+nh^2$
この動画を見る 
PAGE TOP