数学「大学入試良問集」【16−4 複素数平面と軌跡・領域】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【16−4 複素数平面と軌跡・領域】を宇宙一わかりやすく

問題文全文(内容文):
複素数平面上で不等式$2|z-2| \leqq |z-5| \leqq |z+1|$を満たす点$z$が描く図形を$D$とする。
(1)$D$を図示せよ。
(2)点$z$が$D$上を動くものとする。$argz=\theta$とするとき、$\tan\theta$のとりうる範囲を求めよ。
(3)$D$の面積を求めよ。
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
複素数平面上で不等式$2|z-2| \leqq |z-5| \leqq |z+1|$を満たす点$z$が描く図形を$D$とする。
(1)$D$を図示せよ。
(2)点$z$が$D$上を動くものとする。$argz=\theta$とするとき、$\tan\theta$のとりうる範囲を求めよ。
(3)$D$の面積を求めよ。
投稿日:2021.11.26

<関連動画>

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{7}}\ iを虚数単位とする。\alpha=-1+iとし、zは次の条件をともに満たす複素数とする。\\
条件1.\hspace{10pt}\frac{z-\alpha}{z-\bar{\alpha}}の実部は0である。\\
条件2.\hspace{10pt}zの虚部は0以上である。\\
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で\\
\\
囲まれる部分の面積は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\piである。\\
\\
また、w=\frac{iz}{z+1}で表される点wがとりうる値全体の集合を表す図形と、\\
図形Cで囲まれる部分の面積は\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}である。
\end{eqnarray}

2022早稲田大学人間科学部過去問
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科第2問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$a,b,c$に対して整式$f(z)=az^2+bz+c$を考える。iを虚数単位とする。$f(0),f(1),f(i)$がいずれも1以上2以下の実数であるとき、$f(2)$のとりうる範囲を複素数平面上に図示せよ。
この動画を見る 

福田の数学〜北海道大学2023年理系第1問〜複素数平面上の図形の列

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 複素数平面上における図形$C_1$, $C_2$, ...,$C_n$, ...は次の条件(A)と(B)を満たすとする。ただし、$i$は虚数単位とする。
(A)$C_1$は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zが$C_n$上を動くとき2w=z+1+$i$で定まるwの描く図形が$C_{n+1}$である。
(1)すべての自然数nに対して、$C_n$は円であることを示し、その中心を表す複素数$\alpha_n$と半径$r_n$を求めよ。
(2)$C_n$上の点とOとの距離の最小値を$d_n$とする。このとき、$d_n$を求めよ。
また、$\displaystyle\lim_{n \to \infty}d_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 

【数Ⅲ】複素数平面:複素数で表された方程式が示す図形とは?

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式を満たす点Z全体が表す図形を答えよ。

(1)$\vert \bar{z} - i \vert = 1$
(2)$\vert z - 3 + i\vert = \vert z + 1\vert $
(3)$\vert z - i\vert =2\vert z - 1\vert$
この動画を見る 

複素数平面!円が1と−1を通るということは・・・【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
複素数$a$に対してその共役な複素数$\bar{ a }$で表す。

$a$を実数でない複素数とする。複素数平面内の円$C$が$1,-1,a$を通るならば,$C$は-$\displaystyle \frac{1}{\bar{ a }}$も通ることを示せ。

京都大過去問
この動画を見る 
PAGE TOP