福田のおもしろ数学126〜条件付き最大値の問題 - 質問解決D.B.(データベース)

福田のおもしろ数学126〜条件付き最大値の問題

問題文全文(内容文):
正の数$x$, $y$が$x^2$-$2x$+$4y^2$=0 を満たして変わるとき、$xy$の最大値を求めよ。
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の数$x$, $y$が$x^2$-$2x$+$4y^2$=0 を満たして変わるとき、$xy$の最大値を求めよ。
投稿日:2024.04.29

<関連動画>

解けるように作られた五次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x-1)^5+(x+3)^5=328(x+1)$
この動画を見る 

名古屋大学 3次方程式 正の実数解をもつ条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-5ax^2+3a^2x+a=0$が正の実数解をもつための$a$の範囲

出典:2001年名古屋大学 過去問
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

【数学Ⅱ/三角関数】 三角関数の合成

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を、$r\sin(\theta+\alpha)$の形で表せ。
ただし、$r \gt 0,$ $0 \leqq \alpha \leqq 2\pi$とする。
(1)$\sqrt{ 3 }\sin\theta+\cos\theta$

(2)$\sin\theta-\cos\theta$
この動画を見る 

福田のわかった数学〜高校2年生075〜三角関数(14)三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(14) 最大最小(4)
$y=\cos^2x+\sqrt3\sin x\cos x-\sin x-\sqrt3\cos x (0 \leqq x \leqq \pi)$
の最大値、最小値とそのときのxの値を求めよ。
この動画を見る 
PAGE TOP