数学「大学入試良問集」【12−2 微分と直方体の体積】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【12−2 微分と直方体の体積】を宇宙一わかりやすく

問題文全文(内容文):
縦$x$、横$y$、高さ$z$の和が12、表面積が90であるような直方体を考える。
(1)$y+z$および$yz$を$x$の式で表せ。
(2)このような直方体が存在するための$x$の範囲を求めよ。
(3)このような直方体のうち体積が最大であるものを求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#朝日大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
縦$x$、横$y$、高さ$z$の和が12、表面積が90であるような直方体を考える。
(1)$y+z$および$yz$を$x$の式で表せ。
(2)このような直方体が存在するための$x$の範囲を求めよ。
(3)このような直方体のうち体積が最大であるものを求めよ。
投稿日:2021.05.20

<関連動画>

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(1)〜定積分と極限

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (1)\ k \gt 0として、次の定積分を考える。\hspace{130pt}\\
F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx\\
このとき、F(2)=\log(\boxed{\ \ ア\ \ })となる。また、\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }\ である。\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
⓪\ \frac{e+1}{e}  ①\ \frac{e^2+1}{e}  ②\ \frac{e^4+1}{e}  ③\ \frac{e^6+1}{e}  ④\ \frac{e^8+1}{e}\\
⑤\ \frac{e+1}{2e}  ⑥\ \frac{e^2+1}{2e}  ⑦\ \frac{e^4+1}{2e}  ⑧\ \frac{e^6+1}{2e}  ⑨\ \frac{e^8+1}{2e}
\end{eqnarray}

2021明治大学全統過去問
この動画を見る 

数学「大学入試良問集」【18−9 定積分関数と微分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{-x}^{x+4}\displaystyle \frac{t}{t^2+1}dt$について、次の各問いに答えよ。
(1)$f(x)=0$となる$x$の値を求めよ。
(2)$f'(x)=0$となる$x$の値を求めよ。
(3)$f(x)$が最小値をもつことを示し、その最小値を求めよ。
この動画を見る 

#茨城大学2024_1#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^5x\cos x$ $dx$

出典:2024年茨城大学
この動画を見る 

積分による面積計算の公式②【12分の1公式】#shorts

アイキャッチ画像
単元: #積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
積分による面積計算の公式②に関して解説していきます.
この動画を見る 

福田の数学〜東京工業大学2022年理系第5問〜定積分と不等式と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ aは0 \lt a \leqq \frac{\pi}{4}を満たす実数とし、f(x)=\frac{4}{3}\sin(\frac{\pi}{4}+ax)\cos(\frac{\pi}{4}-ax)\\
とする。このとき、次の問いに答えよ。\\
(1)次の等式(*)を満たすaがただ1つ存在することを示せ。\\
(*)  \int_0^1f(x)dx=1\\
(2)0 \leqq b \lt c \leqq 1を満たす実数b,cについて、不等式\\
f(b)(c-b) \leqq \int_b^cf(x)dx \leqq f(c)(c-b)\\
が成り立つことを示せ。\\
(3)次の試行を考える。\\
[試行]\ n個の数1,2,\ldots\ldots,nを出目とする、あるルーレットをk回まわす。\\
この試行において、各i=1,2,\ldots\ldots,nについてiが出た回数をS_{n,k,i}とし、\\
\\
(**)\lim_{k \to \infty}\frac{S_{n,k,i}}{k}=\int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx\\
\\
が成り立つとする。このとき、(1)の等式(*)が成り立つことを示せ。\\
(4)(3)の[試行]において出た数の平均値をA_{n,k}とし、A_n=\lim_{k \to \infty}A_{n,k}とする。\\
(**)が成り立つとき、極限\lim_{n \to \infty}\frac{A_n}{n}をaを用いて表せ。
\end{eqnarray}

2022東京工業大学理系過去問
この動画を見る 
PAGE TOP