【数Ⅰ】【数と式】因数分解1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【数と式】因数分解1 ※問題文は概要欄

問題文全文(内容文):
因数分解せよ
問1 3次の因数分解①
(1) $8x^3+1$ (2) $64a^3-27$ (3) $27x^3+125y^3$
問2 たすき掛け
(1) $abx^2-(a^2+b^2 )x-ab$ (2) $abx^2+(a^2-b^2 )xy-aby^2$
問3 置き換え
(1) $(x^2-x)^2-14(x^2-x)+24$ (2) $(x^2+2x)(x^2+2x-2)-3$
問4 3次の因数分解②
(1) $x^3+3x^2 y+3xy^2+y^3$ (2) $8a^3-12a^2 b+6ab^2-b^3$
チャプター:

0:04 本編:3次の因数分解① 
4:42 たすき掛け 
8:32 置き換え 
12:36 3次の因数分解②

単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
因数分解せよ
問1 3次の因数分解①
(1) $8x^3+1$ (2) $64a^3-27$ (3) $27x^3+125y^3$
問2 たすき掛け
(1) $abx^2-(a^2+b^2 )x-ab$ (2) $abx^2+(a^2-b^2 )xy-aby^2$
問3 置き換え
(1) $(x^2-x)^2-14(x^2-x)+24$ (2) $(x^2+2x)(x^2+2x-2)-3$
問4 3次の因数分解②
(1) $x^3+3x^2 y+3xy^2+y^3$ (2) $8a^3-12a^2 b+6ab^2-b^3$
投稿日:2024.11.05

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第3問〜データの分析と相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ ある病院に入院中の患者20人について、ある検査値と、薬Xと薬Yの使用量との関係について調べた。その結果をまとめたものが以下の表であり、斜線は薬を使用していないことを示す。
(1)薬Xのみを使用している患者の検査値の平均値は$\boxed{\ \ ネ\ \ }$(mg/dL)、薬Yのみを使用している患者の検査値の平均値は$\boxed{\ \ ノ\ \ }$(mg/dL)である。
したがって、薬Xと薬Yのどちらも使用していない患者の検査値の平均と比べ、薬Xのみを使用している患者の検査値の平均値は$\boxed{\ \ ハ\ \ }$、薬Yのみを使用している患者の検査値の平均値は$\boxed{\ \ ヒ\ \ }$。
(2)薬Xと薬Yを併用している患者の検査値の第1四分位数は$\boxed{\ \ フ\ \ }$(mg/dL)、第3四分位数は$\boxed{\ \ ヘ\ \ }$(mg/dL)である。
(3)薬Xの使用量と検査値との相関係数は、薬Xのみを使用している場合は0.78であり、薬Xと薬Yを併用している場合は$\boxed{\ \ ホ\ \ }$である。
よって薬Xと薬Yを併用すると、薬Xの使用量と検査値の相関係数が$\boxed{\ \ マ\ \ }$と考えられる。
なお下線部の0.78は、小数第3位を四捨五入した値である。
ただし、$\sqrt 2$=1.41, $\sqrt 5$=2.23, $\sqrt{30}$=5.48, $\sqrt{101}$=10.05として計算しなさい。

2023慶應義塾大学薬学部過去問
この動画を見る 

式の値 國學院久我山

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a-b=\sqrt 6$, ab=2のとき$a^2-b^2=?$
この動画を見る 

正方形は長方形である

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
真か偽か?(○か✖か?)

正方形は長方形である。
この動画を見る 

福田のわかった数学〜高校1年生027〜いろいろなグラフ(1)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ いろいろなグラフ(1)
$f(x)=\left\{\begin{array}{1}
2x (0 \leqq x \leqq \frac{1}{2})\\
2-2x (\frac{1}{2} \leqq x \leqq 1)\\
\end{array}\right.$

(1)$y=f(x)$のグラフを描け。
(2)$y=f(f(x))$のグラフを描け。
この動画を見る 

連立2元4次方程式

アイキャッチ画像
単元: #連立方程式#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4+x^2y^2+y^4=63 \\
x^2+xy+y^2=9
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 
PAGE TOP