数学「大学入試良問集」【13−3 等差×等比の和】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【13−3 等差×等比の和】を宇宙一わかりやすく

問題文全文(内容文):
年齢1の1つの個体から始めて、以下の操作1,2を$n$回おこなった後の全個体の年齢数の合計を$S_n$とする。
操作1.
 年齢1の各個体から年齢0の$k$個の個体を発生される。
 ただし、$k \gt 1$とする。

操作2.
 全個体の年齢をそれぞれ1増やす。

次の問いに答えよ。
(1)
$k=2$のとき$S_4$を求めよ。

(2)
操作1,2を$n$回おこなった後の平均年齢を$A_n$とするとき、$A_n \lt \displaystyle \frac{k}{k-1}$となることを示せ。
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
年齢1の1つの個体から始めて、以下の操作1,2を$n$回おこなった後の全個体の年齢数の合計を$S_n$とする。
操作1.
 年齢1の各個体から年齢0の$k$個の個体を発生される。
 ただし、$k \gt 1$とする。

操作2.
 全個体の年齢をそれぞれ1増やす。

次の問いに答えよ。
(1)
$k=2$のとき$S_4$を求めよ。

(2)
操作1,2を$n$回おこなった後の平均年齢を$A_n$とするとき、$A_n \lt \displaystyle \frac{k}{k-1}$となることを示せ。
投稿日:2021.05.28

<関連動画>

2つの解法レピュニット数の和

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
和を求めよ.

$1+11+111+・・・・\underbrace{111・・・・1}_{n桁}$
この動画を見る 

【高校数学】数列の基礎・言葉の確認~知らないとヤバい知識~ 3-1【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1,4,9,16,25…この一般項を求めよ。
この動画を見る 

福田の数学〜北里大学2021年医学部第2問〜条件が複雑な重複順列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $n$ を正の整数とし、1,2,3,4,5,6の6個の数字から同じ数字を繰り返し用いることを許して$n$桁の整数をつくる。このような整数のうち、1が奇数個用いられるものの総数を$A_n$、それ以外のものの総数を$B_n$とする。
また、1か6がいずれも奇数個用いられるものの総数を$C_n$とする。次の問いに答えよ。
(1)$A_4$を求めよ。
(2)正の整数$n$に対して、$A_{n+1}$を$A_n$と$B_n$を用いて表せ。
(3)正の整数$n$に対して、$A_n$と$B_n$を求めよ。
(4)$p$を定数とする。$X_1=p$,$X_{n+1}=2X_n+6^n$($n$=1,2,3,...)で定められる
数列を$\left\{X_n\right\}$とする。正の整数$n$に対して、$X_n$を$n$と$p$を用いて表せ。
(5)正の整数$n$に対して、$C_n$を求めよ。

2021北里大学医学部過去問
この動画を見る 

【高校数学】 数B-63 等差数列とその和⑥

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1から200までの整数のうち,次のような数の和を求めよう.

①4の倍数

②4で割り切れない数

③30から100までの自然数のうち,
4または6の倍数の数の和を求めよう.
この動画を見る 

福田の数学〜早稲田大学2024社会科学部第3問〜集合と数列

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$n$を$n \geqq 3$である自然数とする。相異なる$n$個の正の数を小さい順に並べた集合$S=${ $a_{ 1 },a_{ 2 }・・・,a_{ n } $}を考える。$a_{ 1 }=k$とするとき、次の問いに答えよ。
(1)$a_{ i }-a_{ 1 }$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ 2 }$を求めよ。
(2)(1)のとき、$a_{ n }$を$n$の式で表せ。
(3)$\frac{a_{ i }}{a_{ 1 }}$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ n }$を$n$の式で表せ。
この動画を見る 
PAGE TOP