数学「大学入試良問集」【13−3 等差×等比の和】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【13−3 等差×等比の和】を宇宙一わかりやすく

問題文全文(内容文):
年齢1の1つの個体から始めて、以下の操作1,2を$n$回おこなった後の全個体の年齢数の合計を$S_n$とする。
操作1.
 年齢1の各個体から年齢0の$k$個の個体を発生される。
 ただし、$k \gt 1$とする。

操作2.
 全個体の年齢をそれぞれ1増やす。

次の問いに答えよ。
(1)
$k=2$のとき$S_4$を求めよ。

(2)
操作1,2を$n$回おこなった後の平均年齢を$A_n$とするとき、$A_n \lt \displaystyle \frac{k}{k-1}$となることを示せ。
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
年齢1の1つの個体から始めて、以下の操作1,2を$n$回おこなった後の全個体の年齢数の合計を$S_n$とする。
操作1.
 年齢1の各個体から年齢0の$k$個の個体を発生される。
 ただし、$k \gt 1$とする。

操作2.
 全個体の年齢をそれぞれ1増やす。

次の問いに答えよ。
(1)
$k=2$のとき$S_4$を求めよ。

(2)
操作1,2を$n$回おこなった後の平均年齢を$A_n$とするとき、$A_n \lt \displaystyle \frac{k}{k-1}$となることを示せ。
投稿日:2021.05.28

<関連動画>

福田の数学〜慶應義塾大学2021年総合政策学部第5問〜人形を並べる方法と漸化式

単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} (1)\ 同じ人形\ n\ 体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。\\
例えばn=10のとき、下図(※動画参照)のような並べ方がある。\\
\\
\\
ここで、n体の人形の並べ方の総数をa_nとすると\\
a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。\\
\\
(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。\\
その並べ方の総数をb_nとすると\\
b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
\end{eqnarray}

2021慶應義塾大学整合政策学部過去問
この動画を見る 

大阪市立大 奇数の平方の和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021大阪市立大学
nは奇数
$S_n=1+3+5+7+\cdots+n$
$T_n=1^2+3^2+5^2+7^2+\cdots+n^2$
①$S_n$,$T_n$をnの式で表せ
②$T_n$がnで割り切れるためのnの条件
この動画を見る 

宇都宮大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$
$a_{n}=-2S_{n}S_{n-1}$
$(n=2,3…)$

(1)
$a_{2},a_{3}$を求めよ

(2)
$0 \lt S_{n} \leqq 1$を示せ

(3)
$a_{n}$を求めよ

出典:2008年宇都宮大学 過去問
この動画を見る 

【数B】数列:Σ計算、公式暗記の「前」に、「意味」を理解しよう!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \sum_{k=1}^{n}(2k+3)$の値を求めなさい。
$\displaystyle \sum_{k=3}^{10}(k^2)$の値を求めなさい。
この動画を見る 

【等差数列】中学受験・高校受験・大学受験で使える!SPI対策【勉強法】

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#数列#数列とその和(等差・等比・階差・Σ)#規則性(周期算・方陣算・数列・日暦算・N進法)#数学(高校生)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
等差数列

例1
5, 8, 11, 14, 17, -...と並んでいる。

(1) 20番目の数はいくつ?

(2)65は何番目の数?

(3)20日までの数を全部たすと いいくつになる?
この動画を見る 
PAGE TOP