(x-y)⁵+(y-z)⁵+(z-x)⁵を因数分解せよ - 質問解決D.B.(データベース)

(x-y)⁵+(y-z)⁵+(z-x)⁵を因数分解せよ

問題文全文(内容文):
$(x-y)^5+(y-z)^5+(z-x)^5$を因数分解せよ.
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x-y)^5+(y-z)^5+(z-x)^5$を因数分解せよ.
投稿日:2022.10.29

<関連動画>

三乗根の整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$(m,n) m\gt 0$をすべて求めよ.
$\sqrt[3]{7+\sqrt m}+\sqrt[3]{7-\sqrt m}=n$
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
四角形の中にある図形のどちらが大きいか求めよ.
この動画を見る 

「二次関数の平行移動・対称移動」全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次関数$y=2x^2-4x+5$ ・・・①について
$y=2x^2-4x+5$
$\ =2(x^2-2x)+5$
$\ 2\{(x-1)^2-1\}+5$
$\ 2(x-1)^2+3$
であるから、頂点$(1,3)$となる。 ・・・②

(1)
①を$x$軸方向に$3,y$軸方向に$-4$平行移動して得られるグラフの方程式を求めよ。

(2)
①のグラフを$x$軸に関して対称移動させた関数の方程式を求めよ。

(3)
①のグラフを$y$軸に関して対称移動させた関数の方程式を求めよ。

(4)
①のグラフを原点に関して対称移動させた関数の方程式を求めよ。

(5)
$x$軸方向に$1,y$軸方向に$-2$平行移動して、$x$軸に関して対称移動させたグラフの方程式が①になるようなグラフの方程式を求めよ。

(6)
任意の実数$k$について2次関数$y=3x^2+kx-2k+1$のグラフは、ある定点を通る。
その定点の座標を求めよ。
この動画を見る 

【今見るべき公式集!】高校までに学ぶ「因数分解」の公式~全国入試問題解法

アイキャッチ画像
単元: #中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
中学校、高等学校までに学ぶ「因数分解の公式」一覧の解説
①$ma\pm mℓ=m(a \pm ℓ)$
②$x^2 \pm 2xy+y^2=(x \pm y)^2$
③$x^2-y^2=(x-y)(x+y)$
④$x^2 +(a+ℓ) x + aℓ=(x + a)(x+ℓ)$
⑤$acx^2+(ad+ℓc)x+ℓd=(ax+ℓ)(cx+d)$
⑥$x^3\pm y^3=(x+y)(x^2\mp xy+y^2)$
⑦$a^2+ℓ^2+c^2+2aℓ+2ℓc+2ca=(a+ℓ+c)^2$
⑧$a^3\pm 3a^2ℓ+3aℓ^2\pmℓ^3=(a \pmℓ)^3$
⑨$a^3+ℓ^3+c^3-3aℓc=(a+ℓ+c)(a^2+ℓ^2c^2-ℓc-ca-aℓ)$
この動画を見る 

2024年問題

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{array}{r}
イア \\[-3pt]
\underline{\times\phantom{0}イイ}\\[-3pt]
2024 \\[-3pt]
\end{array}
この動画を見る 
PAGE TOP