【高校数学】 数Ⅱ-25 複素数③ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-25 複素数③

問題文全文(内容文):
◎次の複素数と共役な複素数を書こう。

①$-7-2i$

②$2+9i$

③$3i$

④$-6$

◎次の式を計算して、$a+bi$(a,bは実数)の形にしよう。

⑤$\displaystyle \frac{7+i}{1+3i}$

⑥$\displaystyle \frac{2+3i}{2+i}$

⑦$\displaystyle \frac{2i}{3-i}$
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の複素数と共役な複素数を書こう。

①$-7-2i$

②$2+9i$

③$3i$

④$-6$

◎次の式を計算して、$a+bi$(a,bは実数)の形にしよう。

⑤$\displaystyle \frac{7+i}{1+3i}$

⑥$\displaystyle \frac{2+3i}{2+i}$

⑦$\displaystyle \frac{2i}{3-i}$
投稿日:2015.05.11

<関連動画>

【数Ⅱ】【複素数と方程式】複素数の純虚数、共役 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの複素数a+biと2-3iの和が純虚数、積が実数となるように、実数a, bの値を定めよ。

虚数α、βの和、積がともに実数ならば、α、βは互いに共役であることを示せ。
この動画を見る 

長崎大 3乗根 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
長崎大学過去問題
(1)$x^3=1$を解け
(2)$α=m+\sqrt7ni$とすると、$α^3=225+2\sqrt7i$が成り立つ。整数m,nを求めよ。
(3)$β^3=225+2\sqrt7i$を満たす複素数βをすべて求めよ。
この動画を見る 

問題の背景を探る ハンガリーJr数学Olympic

アイキャッチ画像
単元: #複素数平面#円#三角関数#複素数#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a^2+b^2=81$
$x^2+y^2=121$
$ax+by=99$
$ay-bx=?$
これを解け.

ハンガリーjr数学オリンピック過去問
この動画を見る 

複素関数論⑩ 高専数学 複素積分*ex2, *2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$C_{\alpha}:Z=\alpha+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C\alpha}^{} \ \dfrac{1}{(Z-\alpha)^n}\ \alpha_Z$

(2) $C_{\alpha}:Z=1+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C}^{} \ \dfrac{2}{Z-1}\ \alpha_Z$
この動画を見る 

2021一橋大 素数の個数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1000$以下の素数は$250$個以下であることを示せ.

2021一橋大過去問
この動画を見る 
PAGE TOP