数学「大学入試良問集」【1−1 数と式】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【1−1 数と式】を宇宙一わかりやすく

問題文全文(内容文):
次の問いに答えよ。
(1)
$a^2+b^2+c^2=1$を満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$ab+bc+ca$を$x$の2次式で表せ。

(2)
$a^2+b^2+c^2=1,\ a^3+b^3+c^3=0,\ abc=3$をすべて満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$x^3-3x$の値を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$a^2+b^2+c^2=1$を満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$ab+bc+ca$を$x$の2次式で表せ。

(2)
$a^2+b^2+c^2=1,\ a^3+b^3+c^3=0,\ abc=3$をすべて満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$x^3-3x$の値を求めよ。
投稿日:2021.03.11

<関連動画>

福田の数学〜慶應義塾大学2024環境情報学部第1問(2)〜対数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
\begin{eqnarray}
実数x, y, zが \\
\left\{
\begin{array}{1}
x > 1, \ y > 1 , \ z > 1\\
log_{x}y + log_{y}x + log_{y}z \leqq 6\\
4xz + 3x - 7y - 5z = -5
\end{array}
\right.
\\を満たしているとき \
x = \frac{\fbox{アイ}}{\fbox{ウエ}}, \
y = \frac{\fbox{オカ}}{\fbox{キク}}, \
z = \frac{\fbox{ケコ}}{\fbox{サシ}},
\end{eqnarray}
$
この動画を見る 

熊本大(理)漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項を求めよ
$a_1=\displaystyle \frac{1}{8}$

$(4n^2-1)(a_n-a_{n+1})=8(n^2-1)a_na_{n+1}$

熊本大学理学部過去問
この動画を見る 

福田の数学〜上智大学2022年理工学部第1問(1)〜集合と論理

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)x,yを実数とする。次の条件を考える。
$p:xy$が無理数である.
$q:x,y$がともに無理数である.
$r:x,y$の少なくとも一方が無理数である.
$(\textrm{i})$以下から真の命題をすべて選べ。
$(\textrm{a})p \Rightarrow q\ \ \ (\textrm{b})p \Rightarrow r\ \ \ (\textrm{c})q \Rightarrow p\ \ \ (\textrm{d})q \Rightarrow r\ \ \ (\textrm{e})r \Rightarrow p\ \ \ (\textrm{f})r \Rightarrow q\ \ \ \\
(\textrm{ii})x,y$が命題「$p \Rightarrow q$」の判例であるための必要十分条件を、すべて選べ。
$(\textrm{a})$「$xy$が無理数」かつ「x,yが共に有理数」である。
$(\textrm{b})$「$xy$が有理数」かつ「x,yが共に有理数」である。
$(\textrm{c})$「$xy$が有理数」かつ「xが有理数、または、yが有理数」である。
$(\textrm{d})$「$xy$が無理数」かつ「xが有理数、または、yが有理数」である。
$(\textrm{e})$「$xy$が無理数、かつxが有理数」または「xyが無理数、かつ、yが有
理数」である。
$(\textrm{f})$「$xy$が無理数、かつxが有理数」または「xyが有理数、かつ、yが有
理数」である。

2022上智大学理工学部過去問
この動画を見る 

大学入試問題#224 防衛医科大学(2015) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x^2+x+1}$を計算せよ

出典:2015年防衛医科大学 入試問題
この動画を見る 

数学「大学入試良問集」【10−3 極線と軌跡】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
原点$O$を中心とし、半径1の円を$C$とする。
次の各問いに答えよ。
(1)
直線$y=2$上の点$P(t,2)$から円$C$に2本の接線を引き、その接点を$M,N$とする。
直線$OP$と弦$MN$の交点を$Q$とする。
点$Q$の座標を$t$を用いて表せ。ただし、$t$は実数とする。

(2)
点$P$が直線$y=2$上を動くとき、点$Q$の軌跡を求めよ。
この動画を見る 
PAGE TOP