【数Ⅰ】【2次関数】2次関数の最大最小場合分け1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】2次関数の最大最小場合分け1 ※問題文は概要欄

問題文全文(内容文):
aは正の定数とする。関数$y=x^2-2x-1 (0\leqq x\leqq a)$について、次の問いに答えよ。
(1) 最小値を求めよ
(2) 最大値を求めよ
チャプター:

0:00 OP
0:03 導入
1:35 軸からの距離とは
4:24 (1)の解説
8:24 解答のポイント3つ
9:15 場合分けの落とし穴
10:40 問題149(2)の解説

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは正の定数とする。関数$y=x^2-2x-1 (0\leqq x\leqq a)$について、次の問いに答えよ。
(1) 最小値を求めよ
(2) 最大値を求めよ
投稿日:2024.11.23

<関連動画>

二重根号にビビるな! 東京電機大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt x = \sqrt {17 + \sqrt {253}} - \sqrt {17 - \sqrt {253}}$
整数xを求めよ

東京電機大学
この動画を見る 

愛知教育大 二次不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#愛知教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
不等式を解け
$a \neq 0,1$
$a(a-1)x^2+(2-3a)x+2 \lt 0$

出典:2018年愛知教育大学 過去問
この動画を見る 

無理数の2022乗の1の位の数

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(2+\sqrt5)^{2022}$の1の位の数を求めよ.
この動画を見る 

学習院大 2次不等式の基本問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021学習院大学過去問題
$a,b$実数
$ax^2-3x+gt 0$
をみたすxの範囲が$a\lt x\lt a+1$
a,bの値
この動画を見る 

式の値と平方根

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x + y = 3 , xy = -1$
$x^2 -y^2 = ?$
($x>y$)

西部学園文理高等学校
この動画を見る 
PAGE TOP